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ALMOST PERIODIC FACTORIZATION OF CERTAIN 
BLOCK TRIANGULAR MATRIX FUNCTIONS 

ILYA M. SPITKOVSKY AND DARRYL YONG 

ABSTRACT. Let 

eiXXI. 0 1 
c(x) = c_le-Ivx + co + cleei%x e-i mJXI ' 

where cj G CmXm, ., iv > 0 and a + iv = A. For rational a/lv such matrices G 
are periodic, and their Wiener-Hopf factorization with respect to the real line 
R always exists and can be constructed explicitly. For irrational a/v, a cer- 
tain modification (called an almost periodic factorization) can be considered 
instead. The case of invertible co and commuting clc 1, c-1c was disposed 
of earlier-it was discovered that an almost periodic factorization of such ma- 
trices G does not always exist, and a necessary and sufficient condition for its 
existence was found. 

This paper is devoted mostly to the situation when co is not invertible but 
the cj commute pairwise (j = 0, ? 1). The complete description is obtained 
when m < 3; for an arbitrary m, certain conditions are imposed on the Jordan 
structure of cj. Difficulties arising for m = 4 are explained, and a classification 
of both solved and unsolved cases is given. 

The main result of the paper (existence criterion) is theoretical; however, 
a significant part of its proof is a constructive factorization of G in numerous 
particular cases. These factorizations were obtained using Maple; the code is 
available from the authors upon request. 

1. INTRODUCTION 

Let AP be the Bohr algebra of almost periodic functions, that is, the smallest 
C*-algebra of L?(JR) containing all the functions e>,(x) = eiAX, A E R. It is well 
known (the standard references for these and other properties of AP are [3, 11, 12]) 
that for every f E AP, 

1. there exists the Bohr mean value 

M(f) = lim 2 j f(x) dx, 

and 
def 

2. the Fourier coefficients f(A) = M(feA,) are different from zero for at most 
countably many values of A E R. 
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The set Q(f) = {[,: f(,u) 7$ O} is called the Fourier spectrum of f, and 

(1.1) E f(4)eH 
fLGQWf 

is its (formal) Fourier series. 
We say that f E APW if the Fourier series (1.1) converges absolutely: 

E If(,-), <. 
eQ f )'1< 

0 

Finally, let 

AP+ = {f e AP: Q(f) C R?} and APW = AP nfAPw. 

Here, as usual, IR? = {x E R: ? x > O}. 
For matrix functions f, conditions f E AP,AP?, APW, etc. are understood 

entrywise, and M(f), f(,u), Q(f) are defined by exactly the same formulas as for 
scalar functions. 

Following [6], we introduce an AP factorization of an n x n matrix function G 
as its representation in the form 

(1.2) G=G+AG_, 

where A(x) = diag[eA,*,... , ea\ ]X 

(1.3) G1 zAP+, G?1 AP-, 

and A1,... A, E IR. We say that (1.2) is an APW factorization of G if conditions 
(1.3) are replaced by the (more restrictive) conditions G?1 E APW2, G?1 E APW>. 

If G is AP factorable, the numbers A1,... , A are defined uniquely; they are 
called the partial AP indices (of G). Of course, for an AP (APW) factorization 
(1.2) to exist it is necessary that G?1 E AP (respectively, APW). However, this 
necessary condition is not sufficient and, except for the case of periodic matrix 
functions G (in which an AP factorization by a simple change of variable reduces 
to the usual Wiener-Hopf factorization), the theory of AP factorization is "under 
construction". Its connections with integral equations, completion problems, and 
signal processing are discussed in [6, 7], [17, 15, 1], and [14] respectively. Explicit 
formulas for the factors in (1.2) for certain special types of G are obtained in [6, 9, 8]. 
Most of them refer to matrices G of the following block triangular form: 

(1.4) Gf [e,Im e ] 

(so that n = 2m) arising in the treatment of convolution type equations on finite 
intervals of length A. 

In particular, the following two statements were established in [6]. 

Lemma 1.1. Let f be an APW matrix function, and let 

fo = f 5 (4)e 
,u Q (f )n(,) 

Then the matrices Gf and Gf0 are AP (APw) factorable only simultaneously, and 
their partial AP indices coincide. 

Due to Lemma 1.1, for any f E APw in (1.4) we may suppose without loss of 
generality that Q(f) C (-A, A). 
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Theorem 1.2. Let Q(f)n(-A, A) consist of at most two points, say ,u and a. Then 
Gf is APW factorable. Its partial AP indices all equal zero if and only if ,a = 0, 
f (0) is invertible, or ,ua < 0, ,<AA E Z and both f (a), f (a) are invertible. 

The next logical step is to consider a trinomial f with Q(f) c (-A, A). However, 
with no additional restrictions on the location of Q(f) this remains an open problem. 
In this paper, we concentrate on the case Q(f) = {-v, 0, a}, that is, 

(1.5) f = c-le-v + co + clea, 

where a, v > 0 and a + v = A. 
If ,B = a is rational, then the matrix Gf is periodic, and its APw factorization 

exists and can be easily constructed. Thus, we suppose in what follows that 3 
is irrational. The next result applies to the case when the matrices cj in (1.5) 
commute with each other. In this case there exists a similarity T such that 

(1.6) T-1cjT=diag[cj1,... ,cjr], Cjk (ClkXk k-I,... ,r; j= 0,?1, 

and each diagonal block Cjk has a singleton spectrum (see [13, Section 4.4]): 

U(Cjk)={(jk} (j=0,?1;k=1,...r). 

As in [2], we call {Jjk}L_j the bonded eigenvalue triples of cj. 

Theorem 1.3. Let Gf be of the form (1.4) with f given by (1.5) and commuting 
coefficients cj. Then Gf is AP factorable with zero partial AP indices if and only 
if, for all bonded triples {1-1,k, 6O,k, 61,k}, 

(1.7) b1l,k -i,kI $ 10,k (k = 1,... ,r). 

In this form, Theorem 1.3 was established in [2, Theorem 7.2]; the case of invert- 
ible cj was disposed of earlier in [9]. In fact, the result of [9] contains an additional 
important piece of information: if all cj are invertible and (1.7) fails for at least 
one value of k, then Gf does not admit any AP factorization, even if non-zero 
partial AP indices are allowed. Also, it was shown in [16] that an AP factorization 
with zero partial AP indices of an APW matrix function is automatically its APw 
factorization. Hence, the following result holds. 

Corollary 1.4. Let Gf be as in Theorem 1.3 and, in addition, let co be invertible. 
Then Gf is APW factorable with zero partial AP indices if condition (1.7) holds, 
and is not AP factorable otherwise. 

Of course, it would now be natural to consider an AP factorization of Gf with 
trinomial f, pairwise commuting cj, and no restrictions imposed on the invertibility 
of c0 and the values of partial AP indices. We will see, however, that this problem 
embraces a general setting of a trinomial f with arbitrary (not necessarily com- 
muting) coefficients cj and is therefore too difficult to handle at the present stage 
of the development. Our paper is a report on several partial results on the AP 
factorability of matrices (1.4), (1.5) with non-invertible co. 

The paper is structured as follows. Section 2 contains an auxiliary result on 
the factorization of block diagonal matrices. It also describes a procedure which 
allows us to replace a matrix of the form (1.4), (1.5) with invertible c_1 (and 
no commutativity conditions on cj) by another matrix of the same type without 
changing its factorability properties. This procedure is, in fact, a variation of the 
one introduced in [2] for matrices (1.4) with a finite number (not limited to three) of 
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points [tj in Q(f) n (-A, A) but pairwise commuting f (,j). As a direct application 
of this procedure, APW factorability is established for matrices (1.4), (1.5) with 
m = 2, invertible c-1 (or cl) and nilpotent cocl1 (respectively, cocT1). 

Section 3 contains necessary and sufficient factorability conditions for matrices 
(1.4)7 (1.5) with commuting cj under certain additional restrictions on their Jordan 
structure. This covers, in particular, all matrices of size m < 3, invertible c1 or 
c-1 of size m < 4, and matrices of arbitrary size, provided that each eigenvalue of 
at least one of the cj corresponds to one Jordan cell. An application to difference 
equations is given. 

In Section 4, we concentrate on 4 x 4 matrices cj. An example is given explaining 
why this case cannot be covered in general before the AP factorability of matrices 
(1.4), (1.5) with arbitrary invertible non-commuting cj is understood. All possible 
cases are classified, and those for which the AP factorability remains unknown are 
singled out. 

Proofs of the results in Sections 3 and 4 are partially theoretical and partially 
consist in exhausting a large number of cases in which an APW factorization can 
be constructed explicitly. These cases are relegated to Section 5 the supplement 
at the end of this volume, where final formulas are listed. Of course, they can be 
checked by straightforward calculations. We emphasize, however, that a symbolic 
manipulation Maple program was used to obtain these formulas, and without it 
this paper could hardly have been completed. 

2. AUXILIARY RESULTS 

Suppose G is a block diagonal AP matrix: G = diag[G1, G2]. If its diagonal 
blocks G1, G2 are AP factorable, then G itself is AP factorable. Moreover, an AP 
factorization of G can be obtained by "pasting together" AP factorizations of G, 
and G2: G1 = G(l)A(1)G(l), G2 = G(2)A(2)G(2) imply 

G = diag[G(l), G+2)] diag[A(l), A(2)] diag[G(l), G(2)]. 

It is natural to ask whether the converse is true. The answer is positive provided 
that G E APW and partial AP indices of G equal zero. Indeed, a matrix F E 
APW admits an AP factorization with zero partial AP indices if and only if the 
corresponding Toeplitz operator TF is invertible on L2 [5] (see also [7]). Since TG is 
a direct sum of TG1 with TG2, the invertibility of TG is equivalent to simultaneous 
invertibility of TG1 and TG2. 

We are not aware of any equivalent of AP factorability (with non-zero partial 
AP indices) in operator terms. Probably, the answer to the question is still positive, 
but we restrict our consideration to a somewhat weaker version. 

Lemma 2.1. Let G = diag[G1, G2]. If G and one of its diagonal blocks G1, G2 
are AP factorable, then the other diagonal block is also AP factorable. 

Proof. Consider first the case when G1 = 1. Then an AP factorization of G can be 
rewritten as 

(2.1) F [1 ? ] AG- 
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where F+ = Gi1 E AP+. Denote F+ = (fij).j=l. From (2.1), eA3\jfjl E AP-, so 
that 

(2.2) Q(fW1) c [0OjA]. 

In particular, fjl = 0 for all j (if there are any) such that Aj < 0. Rewriting (2.1) 
as 

[ 0G12 G+A = G-1, 
[0 G1]G2G 

we find similarly that 

(2.3) Q(gi ) C [O, -Aj]' 

where G+ = (gij) ,j=l Therefore, glj = 0 for all j (if there are any) such that 
Aj > 0. Observe also that G+F+ = I implies that n=1 gij fi = 1. Since for non- 
zero Aj at least one of the entries glj, fji is equal to zero, the latter equality proves 
the existence of zero partial AP indices Ai. Due to (2.2), (2.3), the corresponding 
functions glj, fil are constant, and for at least one value of j, gljfjl 7$ 0. 

Applying an appropriate permutation of columns of G+ and rows of G_, we 
may suppose without loss of generality that A1 = 0, gll = c 5$ 0, fii = d 7$ 0. 
Partitioning G+, F+ as 

G+ = [92 G F+ [f+ F9 F 

we conclude that c = det F2+/det F+ = det F2+ det G+. Since c 5$ 0, the matrix F2+ 
is invertible in AP+ simultaneously with G+. From (2.1) and (2.2) it follows that 
the left-upper entry of G_ and H_ = G-1 equals d and c, respectively. Thus, 

[d g- 1H =[c h-] 
G_ = [g i G-H [hH H_ = 

and c = det G2-/det G_. Since c $ 0, the matrix G2- is invertible in AP- together 

with G_. Now partition A = [1 As]. Then (2.1) yields F+G2 = A2G-, or 

G2 = (F2+)-1A2G-. Since (F2+)71 E AP+ and (G-)"1 E AP-, the latter formula 
delivers an AP factorization of G2. This proves the desired statement in the case 
G, = 1. 

If G1 = eA, then the matrix e_)G = diag[1, eAG2] is AP factorable together 
with G. According to the already proven particular case, e_A\G2 is AP factorable. 
But then G2 is AP factorable as well. 

An induction argument allows us to consider G1 of the form diag[eA1, ... , e,\,= 
A1. Finally, for an arbitrary AP factorable G1 = G+1)A,G(l) we can write 

G = diag[G(l), I] diag[Al, G2] diag[G(l), I] 

and consider an (AP factorable) matrix diag[A1, G2] instead of the original matrix 
G. C: 

Another technical tool we need applies to matrix functions Gf with a trinomial 
f containing an invertible c-1 coefficient. 
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Lemma 2.2. Let G be of the form (1.4) with f given by (1.5). If c_1 is invertible, 
then G is AP (APw) factorable only simultaneously with (and has the same partial 
AP indices as) the matrix function 

(2.4) G1 = [ef1 e2im j' 

where 

(2.5) fi = c(l)e1 ? +c(l) +c(l) e1, 

C(1 )( 1)s(C-l Co)s+ co = Clc, C4) =(1 

A1 = VI, l = a - Sv, a1 = (s + 1)v -a, 

and finally, s is the integral part of 0': s E Z and s < K < s + 1. 

Proof. It suffices to construct matrix functions X+ and X_ such that X+1 E AP+, 
X E APW> and 

(2.6) X+GX_ = G1. 

To this end, let 

2 7) + L~~e_,\_,I + (g -e_'j)c_lf I -ge'\ L? c-1 
I 

I [I O [e_oI + Z 1(-1)j(c-1co)jeji,, I] 

where g = c-lcl - ,2(_ _)j(c-lco)je(j-,)v-_,. Directly from the definition of s 
it follows that X_ E AP-. Since detX_ = detc-, is a non-zero constant, Xi 
belongs to AP- together with X_. 

A straightforward computation shows that 

X GX F-[ cjfe1, -eA+1,I 

_ [ c=fe,, -eA+j1 

[eA,,I + (g-e_AI)c-1f I-geAJ 

ee,I + Z(-1)i (c-co)3e(j+1)3 eAI 

x j=1 e 
c- e_f + j-f (-l)j(c-1c0)je(j,,_,e_x e- I 
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where 

Yii = c lfe2, + c1f Z(-1)J(clco)Je(J+2)l, - c-1 
j=1 

8 

- f (-1)j(c-1co)je(j+2), + e,,I =e,, 
j=1 

Y12 = c_ feA+L, -c- 1 feA+v, = O, 

Y22 = e-,I + (geA - I)c_lf + (I - geA)c-If = e_'I, 
and finally, 

Y21 = (e-A-vI + (g - e_AI)c1f) (evI + (-1)i(cI1co)je(i+l)v) 

+?(I-geA) (ci ecj + ctfZ,(-l)i(clco)ieiv -,-e_AI) 

- eA>I + Z(-1)J(c1lco)JejVA> + (g - eAI) 
j=l 

s~~~~ 

x (cIfe- + c-lef Z(1)(c1lco)ie(j+l)v 

-clfe1, -6fZ-1)JcloJe+i 

j=l 
S 

- e_I + Z(_1)ij(clc)iejv_-A + g - e_,I 
j=1 

> >~~~~~~~+2 

- Z(-1)J(c-cO)fejV_, + cc1 - Z(-c1c)j(cltcoYe(jl)V- 
j=l j=l 

- (-1)S(c_co)f+le,s- + C-1C1 + (-1)S+l(c c0)v+2e(S+l)v-O = fI. 

This implies (2.6). Since det G = det G1 = 1, from (2.6) it follows, in particular, 
that det X+ = (det X )1 is a non-zero constant. It remains to show that X? e 
AP+, because then Xiji1 e AP+ as well. Three blocks of X+ are obviously in AP+. 
The remaining (left-lower) block can be rewritten as 

e_A_,I + (g - e_I)c11f 

-1 -1 -1 

= eA_,I + c-ce_1, + C-1C1C-eCv + (cgc-)2ee 
s+2 s+2 

- Z(-1)i (c-tco)Je(j_~2)v >_c,.-L- (Cloi ejl 
j=1 j=l 
s+2 

-(-1)j(c-lco)je(j_l)l,(c-tcl) - EI-ccC- oe_A- CJjce 
j=1 

s+2 

- -1 (,-1s,\21,,+2(q+)Va l 

- C 1CiC1C0- + + C1cl),--1 

j=l 

+ (c-lco)e_C- cf-(cIlco)eA. 
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Cancelling out the terms ?(c-lco)eAx in the last expression, we see that this 
block belongs to AP+ as well. D 

Formula (2.6) is a particular case of the transformation introduced in [2] for 
an arbitrary AP polynomial (not necessarily a trinomial) f with invertible Fourier 
coefficient corresponding to the leftmost point in Q(f) n (-A, A). However, in [2] 
only the case of commuting coefficients was considered. Also, formulas (2.7) for a 
trinomial case are more explicit than the general formulas of [2]. 

The resulting matrix G1 in general has the same structure as the original matrix 
G: Q(fU) C {-V,O,Aal}, where al,v1 > 0, ca + vli = A1 and s1 = vil/ca is 
irrational together with ,B. In some instances, however, G1 may be easier to deal 
with. One such situation is discussed in the next theorem; other applications of 
Lemma 2.2 can be found in subsequent sections. 

Theorem 2.3. Let the matrix G be given by (1.4), (1.5) with c-1 invertible, coc-1 
nilpotent and having all Jordan cells of the size at most [>] +2. Then 1) G is APw 
factorable, and 2) its partial AP indices equal zero if and only if cl is invertible. 

Proof. Due to Lemma 2.2, we may consider the matrix (2.4) instead of G. The con- 
ditions imposed on the Jordan structure of cocl1 imply that (cIlco)-+2 = 0. Thus, 
f' in (2.4) is in fact a binomial with Q(fi) C {-ilI,0}. According to Theorem 1.2, 
the matrix G1 is APW factorable, and its partial AP indices equal zero if and only 
if the constant term c-lc1 of f, is invertible. The latter condition is equivalent to 
the invertibility of cl. D 

Recall now the duality between an AP factorization (1.2) of Gf and that of Gf: 

(2.8) Gf- = (JG* )A*(G*JI) 

where J = [I 0] From (2.8) and Theorem 2.3 follows 

Corollary 2.4. Let the matrix G be given by (1.4), (1.5) with cl invertible, coc 1T 
nilpotent and having all Jordan cells of the size at most [,] + 2. Then G is APw 
factorable, and its partial AP indices equal zero if and only if c1, is invertible. 

Observe that the condition on the size of Jordan cells is satisfied automatically 
if m = 2. Hence, the following statement holds. 

Corollary 2.5. Let the matrix G be given by (1.4), (1.5) with m = 2, let one 
of the coefficients c?j be non-singular, and let the corresponding product coci1 be 
nilpotent. Then 1) G is APW factorable, and 2) its partial AP indices equal zero if 
and only if the second of the coefficients c?j is invertible as well. 

3. MAIN RESULT 

We now turn to matrices (1.4) with the off-diagonal block (1.5) having pairwise 
commuting coefficients c?1, co. The representation (1.6) is not unique, and we 
choose one with the maximal possible number r of diagonal blocks. Each triple 
{C_1,k, COk, Clk} is then irreducible, that is, does not allow a further reduction to a 
block diagonal form with the help of a common similarity. Of course, the commu- 
tativity property of {c_ 1, co, cl } is inherited by the triples {Cp1,k, Cok, Clk}. 

The ambiguity of T also allows us, for each k = 1,... , r, to put one of the 
matrices Cjk (with our choice of j = 0, ?1) in its Jordan canonical form. If, for a 
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given k, at least one of the matrices Cjk is unicellular (that is, its canonical Jordan 
form consists of only one cell), then for such a T all the matrices Cjk with the same k 
automatically become upper triangular and, in addition, have a Toeplitz structure. 
The latter means that (p, q)-entry of each of the matrices C_1,k, CO,k, C1,k is the 
same as its (p + 1, q + 1)-entry (p, q = 1, ... ., I -1). For lk > 1, the common value 
of the entries right above the main diagonal in Cjk for such k will be denoted by 
rj1k (of course, the common value of the diagonal elements of the Cjk in this case is 
(jk)- 

With this notation at hand, we are ready to formulate our main result. 

Theorem 3.1. Let G be given by (1.4), (1.5) with pairwise commuting coefficients 
C?1, Co. Suppose that in (1.6) for each k = 1,... ,r at least one of the following 
conditions holds: 1) (Ok $ 0, 2) 61,k(-1,k $ 0, 3) one of the blocks c?l,k, COk is 
unicellular, 4) Ik < 3, 5) 61,k or (-1,k differs from zero and Ik < 4. Then G is not 
AP factorable if, for at least one value of k, 

(3.1) 

|C kf-1,k| I= I60kI $ 0, or _-1,k = (Ok = 61,k = 0 and Ir{,kr-1,k1 = IrbOkl $ 0, 

and is APW factorable otherwise. 

Proof. Using (1.6), introduce a matrix 

pT-1 ? 
- 
T 01 _ 

- 
eA Im O 

[L? T-1 G [ ] T =diag[cl,kev + Cok + Cl,keo] e-AIm] 

having the same factorization properties as G. By an appropriate permutation of 
its rows and columns, this matrix can be further rewritten as a direct sum of the 
blocks 

Gk eAik 0 

Gk C[1,ke-v + COk + Cl,keo e-AIIk] 

k = 1,...r. Let R = {1,... ,r} and denote by Ro the subset of those r E R such 
that 61,k = (-1,k = (Ok = 0, Ik > 1 and (at least) one of the blocks C?l,k, COk is 
unicellular. We now partition R into a disjoint union Uj=>1 Rj, where 

R, = {k: k1-1,k1 = 16Ok\ / ?}, 

R2 = {k E Ro: L71q,kqc-1,k1 = '70kl $ ?} 

R3 = Ro \ R2, 

R4 = R \ (R1 U Ro). 

For every k E Ro, yet another permutation of rows and columns allows us to 

represent Gk as a direct sum of [eO 01 with 

0 eAJ\O 

= 1cQl,ke-j + Cok + Cl ,kea e-AIIk-l- 

Here Ck are obtained from Cjk by deleting its first column and last row. The 
Toeplitz structure of Cjk is inherited by C;k. In particular, the Ck pairwise commute 
and aJ(CIk) = {?ljk} (j = 0, ?1; k E Ro). 

Denote by G(') the direct sum of all the blocks Gk, k E R1, and G', k E R2. 
Let G(2) be a direct sum of all Gk (k E R4), G' (k E R3), and JR21 copies of 
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the diagonal blocks [ e Then G can be put in the form G(') E G(2) by 

an appropriate permutation of its rows and columns. In turn, G(') will become 
a permutation of a matrix of the type (1.4) with f = b-le-, + bo + ble,Q and 

bi = 
(EkER1 Cjk) E (EkER2 C/k) 

In terms of the sets Rj, this theorem claims that G is APw factorable if R1 UR2 = 

0, and is not AP factorable otherwise. This follows from Lemma 2.1, provided that 
G(2) is APw factorable and, for R1 U R2 5$ 0, G(') is not AP factorable. The latter 
statement holds due to Corollary 1.4. It remains to prove the former. We will do 
this by showing that each direct summand of G(2) is APW factorable. There are 
five types of these summands: 

(i) diagonal blocks [o eA] 

and matrices (1.4) with f given by (1.5), pairwise commuting c?1, co (slightly 
abusing the notation, we again denote their size by m), singleton spectra o(cj) = 

{Jj } (j = ?1, 0) for which 
(ii ICI'10_11 7& lfo IX\ 

(iii) 6o = 0, exactly one of (?j differs from zero and (at least) one of the blocks 
c?1, co is unicellular, 

(iv) 4o = 0, exactly one of (?j differs from zero, and m < 4, 
(v) (o = 6j = (-j = 0 and Tn < 3. 

Indeed, the blocks Gk with k E R1 have no impact on G(2), k E R2 generate only 
summands of type (i), k E R3 yield summands of type (i) and (ii) or (iii), and 
k E R4 produce summands of types (ii)-(v). 

The summands of type (i) are trivially APw factorable (with partial AP indices 
?A). The summands of type (ii) are APW factorable (with zero partial AP indices) 
according to Theorem 1.3. It remains to considey matrices (1.4) of types (iii)-(v). 

In cases (iii) and (iv) we may without loss of generality suppose that 4j = 0, 
$1 = 0; otherwise, Gfp can be considered instead of Gf. If in addition, co = 0 or 

cl = 0, then f is a binomial and the corresponding matrix (1.4) is APw factorable 
due to Theorem 1.2. This happens, in particular, if m = 1. 

If all three coefficients of f differ from zero, we consider the matrix (2.4). It 
can happen that cj+2 = 0, in which case the resulting block (2.5) is a binomial. 
Applying Theorem 1.2 and Lemma 2.2, we conclude that (2.4), and therefore (1.4), 
are APW factorable. If c'+2 $h 0, we consider cases (iii) and (iv) separately. 

(iii) The matrices cj have an upper triangular Toeplitz structure which is inher- 
ited by the coefficients (1) of (2.5). Hence, 

m > rank c(l) = rank cl 

and 

m > rank c(l) = rank co+l > rank c4) = rank c'+2 > 0. 

Let q = max{rankcl) ,rankc(l)}, p = m- q. Then both p and q are strictly 
positive. By a permutation of its rows and columns, the matrix G1 can be reduced 
to the form 

(3.2) 
~ _vi 

_ 
evI 

r 
0 
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where 

(33) f2=~~~~~C(2 )e-vl + c(2 )+c(2 )ec,> (3-3) (2)1 0 

and the matrices c( are obtained from (1) by deleting their first p columns and 
last p rows. It suffices to prove now that the second direct summand in (3.2) is 
APW factorable. 

If rankc(l) > rankc(l), this summand falls into type (ii). In the opposite case, 
this is again a matrix of type (iii), but its size is strictly smaller than that of the 
original matrix: q < m. By induction we now conclude that all matrices of type 
(iii) are APw factorable. 

(iv) The case of unicellular co is covered by (iii). Since m < 4 and c'+2 54 0, the 
only remaining case is s = 0, m = 4 and co consisting of one-3 x 3 and one 1 x 1 
Jordan cell. The same Jordan structure is possessed by the matrix c-lco. Without 
loss of generality we may suppose that in (2.5) 

~0 1 0 0 

(3.4) cM = c- = ? O 1 0 
-,C O O O 

Then 

c1 )=-(~co 0)2= [0 
O 

() 0 O ] 

The matrix c(1) = c-1c is nilpotent and commutes with (3.4). Thus, 

O z u b 
(1)_ 0 0 z 0 

C0 10 0 0 0I 
[0 0 a O0 

If a = b =0, then the matrix G1 can be split into a direct sum of [ 0 2 ?2J 

and G2= [e72 j where f2 is given by (3.3) with 

C21 12, 
(2) 

_ [Z (2) [0 -ii 
C(2) C [o z] C1 = [o oJ 

The matrix G2 is of type (ii) or (iii) (depending on whether or not z is zero), and 
therefore APW factorable. Of course, G1 is APW factorable together with G2. 

If a or b differs from zero, represent G1 as a direct sum of diag[e,,e_,] with 

G3- f3 0 
where f3 = c (3) e_, + c(3) + c(3) e and 

[f3 i-VI3J0 

1 0 0 Z U b- 0 -1 0 

c(3)= ? 1 ? t c(3)= ? Z ? t c(3)= ? ? ? 

LO O OJ LO a Oj LO O Oi 

The explicit APW factorization of G3 is shown in Appendix A of the supplement. 
Hence, all matrices of type (iv) are APw factorable. 
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Finally, consider the remaining type (v). If m < 2, then each matrix cj either is 
unicellular or equals zero. In both cases, an APW factorization exists. Therefore, 
we may suppose that m = 3. Excluding another trivial case co = 0 (in which f is a 
binomial), we are left with the only possible Jordan structure of Co: one 2 x 2 and 
one 1 x 1 block. Then, without loss of generality, 

0 1 0 

CO O O 

The matrices c?j commute with co and are nilpotent. Therefore, 

cA= [O :O 1 
"O z? O 

The matrix G splits into a direct sum of diag[eA, eA] and G1 e[eAI2 ] 

where fi = cMe-> + c(l) + c(l) e, 

(1)_ ?1 c() FX? YA 

From commutativity of cl with c-, it follows that x+z = x_z+; however, later on 
we will encounter a factorization problem for matrices G1 with c(l) not satisfying 
this requirement. Therefore, we do not impose the condition x+z_ = x_z+ in our 
consideration. 

The case x+ = x_ = z+ = z_ = 0 is excluded because otherwise the triple 
{c_1,co,c1} would be reducible. The cases x+z+ $A9 and x_z_ $L 0 are covered by 
Corollary 2.5. In all the remaining cases an APW factorization of G1 also exists; it 
is constructed explicitly in Appendix B of the supplement. Hence, matrices G of 
type (v) are also APw factorable. D 

As an application of Theorem 3.1, consider a difference equation 

(3.5) cily(t - i) + coy(t) + cly(t + a) = g(t) a.e. on (0, A), 

where g is a given vector function in LP(0, A), y is an unknown vector function in 
LP(R) with suppy C [0,A]. 

According to standard terminology, we say that (3.5) is normally solvable (in 
LP) if the set of vector functions g for which (3.5) has a solution is closed. 

Theorem 3.2. In (3.5) let a + I = A, let a (> 0) be irrational, and let the coeffi- 
cients cj E CtmXm satisfy the conditions of Theorem 3.1. Then the equation (3.5) 
is normally solvable if and only if, in the notation of Theorem 3.1, condition (3.1) 
fails for every k. 

This result does not depend on p E (1, oo). 

Proof. As follows from [7, Section 4.1], equation (3.5) is normally solvable if and 
only if the Wiener-Hopf operator WG, the symbbl G of which is given by (1.4), 
(1.5), has closed range in LP(O, oo). 

If condition (3.1) fails for all k, then the matrix function G is APW factorable 
due to Theorem 3.1. Hence, WG has a generalized inverse, and therefore its range 
is closed. 
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To prove the converse statement, consider first a particular case when in (1.5) 
each matrix cj has a singleton spectrum {j }, and 

1CI6a11 = lol>I 7$ 0. 

According to Theorem 3.1, the matrix function G in this case is not AP factorable. 
If m = 1, the homogeneous equation (3.5) takes the form 

y() { -iy(t- ) if v < t <A, 
8(t ={_?y(t + se) if O < t < VI 

and has at most one linearly independent solution (see, for example, [4]). 
For m > 1, a similarity can be used to put the cj simultaneously in a triangular 

form, with (j on the diagonal. Therefore, the number of linearly independent 
solutions of the respective homogeneous equation (3.5) is at most m. Suppose that 
this equation is normally solvable. Then the corresponding Wiener-Hopf operator 
WG has a closed range and a finite dimensional kernel; in other words, it is n-normal. 
This property, as well as the index ind WG of the operator WG (the difference 
between the dimension of its kernel and the codimension of its range), is preserved 
under small perturbations. Consider such a small perturbation WGf, with f' = 
c1le_, + (co + cI) + cleQ, and 0 $: 1o + el 7$ lfol1 Then G' = Gf, admits an APW 
factorization with zero partial AP indices (Corollary 1.4), so that WG, is invertible. 
Hence, ind WG = indWG, = 0. From here it follows that codim Im WG is finite 
together with dim Ker WG; that is, the operator WG is Fredholm. Since G E APW, 
Theorem 2.5 of [7] implies that G is APW factorable. This contradiction shows that 
in fact the range Im WG of the operator WG is not closed. 

Finally, consider the general case when (3.1) holds for some k. Then, as was 
shown in the proof of Theorem 3.1, the corresponding matrix G can be split into a 
direct sum of summands, a non-zero number of which are of the type just considered. 
Hence, WG also splits into a direct sum of operators, some of which have a non- 
closed range. Therefore, Im WG is not closed. I 

Remark. The above reasoning shows that for matrix functions G satisfying the 
conditions of Theorem 3.1 the operator WG has a closed range if and only if G is 
AP factorable. This is not true in general; examples of not AP factorable 2 x 2 
triangular matrix functions G E APW for which Im WG is closed can be found in 
[10]. 

4. REMARKS ON 4 x 4 CASES 

Theorem 3.1 covers all matrices (1.4), (1.5) with commuting cj of size m < 3. 
Hence, the case of reducible 4 x 4 triples is also covered. For irreducible {c_1, co, cl }, 
each cj has a singleton spectrum, say aJ(cj) = {Jj}. The cases when at least one of 
the (j differs from zero or cj is unicellular also fall into the setting of Theorem 3.1. 

This leaves us with the situation of an irreducible triple of 4 x 4 nilpotent matrices 

cj (j = 0, ?1), none of which is unicellular. We may suppose in addition that none of 
them is diagonalizable (that is, has only 1 x 1 Jordan cells). Indeed, a diagonalizable 
nilpotent matrix equals zero, and the corresponding G is then APW factorable due 
to Theorem 1.2. There remain three possible Jordan structures: two 2 x 2 cells, 
one 2 x 2 and two 1 x 1 cells, and one 3 x 3 and one 1 x 1 cells. 

The following example demonstrates why the case of two 2 x 2 Jordan cells is 
hard to handle. 
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Example. Let cj = [? cO ] where the c() are arbitrary (not necessarily com- 

muting) non-singular 2 x 2 matrices, j = ?1, 0. Then G can be split into a direct 
[e,\I2 ol eA\I2 01 

sum of [eAI and Go = I (0) (0) (0) I According to 
- 0 e -,\ I2-[c1e-V ,+co + c1 Jc -,I 

Lemma 2.1, the matrices G and Go are AP factorable only simultaneously. Hence, 
the AP factorization problem for G is reduced to the corresponding problem for 
matrices of the form (1.4) with non-commuting coefficients of f. Since the latter 
problem is still open, it is not surprising that a complete description of the AP 
factorability for matrices (1.4), (1.5) with commuting 4 x 4 coefficients cj is also 
missing. 

We will now discuss the two remaining possibilities for the Jordan structure of 
co. First, let co consist of one 2 x 2 and two 1 x 1 Jordan cells. Without loss of 
generality, co itself is in a Jordan form: 

0 1 0 0 

(4.1) co= 1001 

From the commutativity of c?j with co and their nilpotency it follows that 

O a? b? d1 
C?l- 

0 0 

c?1= 0 f? h? 1? 
O g? j? k? 

where A? [h ,k] are themselves ililpotent. 

We may also use a similarity to reduce A+ to its Jordan canonical form without 
disturbing co and the structure of A_. Thus, h+ = k+ = j+ = 0 and 1+ = 0 or 1. 

If l+ =1, then commutativity of cl with c-, implies that h_ = k_ = j = 0. If 
1+ = 0 (that is, A+ = 0), then we can use a similarity to reduce A_ to its Jordan 
canonical form without changing co and A+. Hence, in any case it may be supposed 
that h? = k? = j? = 0, that is, 

+ a? b? d1 
(4.2) C?1=[o f 0 l?j 

L0 g? 0 0 

Also, from commutativity of cl with c_ 1 (which is preserved under the similarities 
applied above), 

(4.3) l+9g = 1_g+, I+b_ = I_b+, b+f_ + d+g_ = b_f+ + d_g+. 

Theorem 4.1. Let G be given by (1.4), (1.5) with co, c?j as in (4.1) and (4.2), 
respectively, satisfying (4.3) and forming an irreducible triple {CI, Ct, Clo}. Then G 
is not AP factorable if 

b+ =b =g+ =g_=0, ID'D" I = ll 17 $0, 
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where 

D? = det [a? 1] = a?l? -d?f 

and is APW factorable otherwise. 

Proof. We need to show that G is APW factorable if 

i) at least one of the numbers b?, d? differs from zero, or 

ii) b+ = b_ = g+ = g_ = I+l_D+D_ = 0 

and that in the case 

iii) b+ = b- = g+ = g_ = 0, I?D? 7$ 0 

it is AP (APw) factorable if and only if 

(4.4) IDOD+' 7& 11+1 lo. 

In case i), rewrite G as a direct sum of diag[eA, eA,] and another matrix of the 
form (1.4), with m = 3 and 

a? b? d? 1 0 0 

c?= f? O 1 F , cof O O 

9? 0 0 O O O 

If c-, is invertible, that is, b_g_l_ 7$ 0, then Lemma 2.2 can be used. A direct 
computation shows that 

C_1 Co = ol ? 

and therefore (c-Ico)2 = 0. Hence, fi in (2.4) is at most a binomial, and the matrix 
G1 is APW factorable due to Theorem 1.2. The original matrix G is then also APW 
factorable. 

Using (2.8) and appropriate transpositions of rows and columns, we can cover 
the case of invertible cl, that is, b+g+l+ $h 0. It remains to construct an APw 
factorization in the cases when, in addition to (4.3), 

(4.5) b+g+l+ = b_g_l_ = 0. 
This is done in Appendix C. 

In cases ii) and iii), we represent G as a direct sum of [eAI2 
0 

1 and another 
0 e A I2 

matrix G1 of the form (1.4), (1.5) with m = 2 and 

C(1) pa d?] c(l)[ 1 0] 
cXl-f? 1-- ' -0? 0- 

If 1+ = 0 and d+ f+ 5$ 0, then the matrix G1 is APW factorable due to Corol- 
lary 2.5. The same reasoning applies if I- = 0, d_f_ 5$ 0. The cases 1+ = I- = 
d+ f+ = d_ f_ = 0 when not all of the four entries d?, f? equal zero are covered by 
Appendix B in the supplement. Observe that the case d? = f? = 0 is excluded due 
to the irreducibility of the original triple {c1, co, cl} given by (4.1), (4.2). Hence, 
the situation when 1+ = I_ = 0 is covered completely. 

In all other cases (when at least one of 1+, 1_ differs from zero) we may use the 
symmetry (2.8) to suppose without loss of generality that, say, 1_ 5$ 0. An obvious 
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similarity performed on the original 4 x 4 matrices c?j (and not changing co) allows 
us to suppose in addition that d_ = f_ = 0. This similarity may, of course, change 
the values of a? and d+, f+; however, det c(l) remain the same, so that the new 
value of a_ is D/l_. To simplify the notation, we redenote D+ by D. 

If l+ = 0, then d+, f+ do not change under the above mentioned similarity. The 
only situation left uncovered by previous considerations is the case in which exactly 
one of d+, f+ differs from zero. 

In case ii), we are left with only two possibilities: 1) l_ $h O, l+ = d_ = = O, 
exactly one of the entries d+, f+ differs from zero, and 2) 1+1_ 54 0, d_ = 0, 
a_D = 0. Appendix D in the supplement shows that the corresponding matrix G, 
(and therefore G) is APw factorable. 

In case iii), the additional condition d = - 0 means that a-(= D_/l_) $ 0, 
and (4.4) can be rewritten as 

(4.6) lacDl $ jlj . 

A straightforward calculation shows that G1 = X+G'X_, where 

[1 d+l-e, 0 01 
-f+ a-+ex - L(e, + a-) -ev f+e, 

0 d+ (a- + +a+l-)e -d+ a+ 
[0 (a_ 12 + d+f+l1)ea - 11+ -1+ f+ 

is invertible in AP+), 

ad1+ 0 ad +e 
I 0 1 0 e_I x =I-1 a-1l1- 

= f+(l+a.e-) _a+l(l+a-e-,) f+e-x I _a_+(a_-_e+e__ ) 
D aaD D 1- a-D 

is invertible in APP, and 

G'- 0 1 0 0 
_ O ~ ~~ 0 1 0 
[al+ev +j++De, O O e_>, 

can be split into a direct sum of I2 with 

[ \01 
C2 = [ail+e-, +1+ +De, exJ] 

Of course, G1 is AP (APw) factorable only simultaneously with G', and in turn, 
G' has the same factorability properties as G2. The latter matrix satisfies the 
conditions of Corollary 1.4 with m = 1. In the notation of this statement, (1,k = D) 
(Ok = 1+ and (-1,k = a_l+ with the only value of k (=1), so that condition (1.7), 
necessary and sufficient for an AP (APw) factorization to exist, is equivalent to 
(4.6). 

Finally, let co consist of one 3 x 3 and one 1 x 1 Jordan cells 

0 1 0 0 

O 0 1 0 
co= ? ? ? ? 

0 0 0 0 
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Then the only possible form of c?j is 

O d? f? b? 
0 O d? 0 

c?1 o 00 01 
L0 0 a? 0 

where 

(4.7) a+b_ = a_b+. 

The case a+ = a_ = b+ = b_ = 0 is excluded if the triple {c_1, co, c1 } is irreducible. 
Splitting G into a direct sum of diag[ex, e_x] and another matrix of the form (1.4), 
we may suppose that m = 3 and 

d? f? b? 1 0 0 
CA 1 = 0 d? O ,co= 0 1 0 

O a? 01 ' O 

In the case when all four of the coefficients a?, b? are different from zero, an 
APW factorization exists and can be explicitly constructed (see Appendix E in the 
supplement). Due to the commutativity condition (4.7), the number of non-zero 
entries among a?, b? cannot equal one. However, there remain cases of exactly 
two or three non-zero numbers a?, b?, and in these cases the AP factorability of 
the corresponding matrices G is still unknown. 
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