ALMOST PERIODIC FACTORIZATION OF CERTAIN BLOCK TRIANGULAR MATRIX FUNCTIONS

ILYA M. SPITKOVSKY AND DARRYL YONG

Abstract. Let

$$
G(x)=\left[\begin{array}{cc}
e^{i \lambda x} I_{m} & 0 \\
c_{-1} e^{-i \nu x}+c_{0}+c_{1} e^{i \alpha x} & e^{-i \lambda x} I_{m}
\end{array}\right]
$$

where $c_{j} \in \mathbb{C}^{m \times m}, \alpha, \nu>0$ and $\alpha+\nu=\lambda$. For rational α / ν such matrices G are periodic, and their Wiener-Hopf factorization with respect to the real line \mathbb{R} always exists and can be constructed explicitly. For irrational α / ν, a certain modification (called an almost periodic factorization) can be considered instead. The case of invertible c_{0} and commuting $c_{1} c_{0}^{-1}, c_{-1} c_{0}^{-1}$ was disposed of earlier-it was discovered that an almost periodic factorization of such matrices G does not always exist, and a necessary and sufficient condition for its existence was found.

This paper is devoted mostly to the situation when c_{0} is not invertible but the c_{j} commute pairwise $(j=0, \pm 1)$. The complete description is obtained when $m \leq 3$; for an arbitrary m, certain conditions are imposed on the Jordan structure of c_{j}. Difficulties arising for $m=4$ are explained, and a classification of both solved and unsolved cases is given.

The main result of the paper (existence criterion) is theoretical; however, a significant part of its proof is a constructive factorization of G in numerous particular cases. These factorizations were obtained using Maple; the code is available from the authors upon request.

1. Introduction

Let $A P$ be the Bohr algebra of almost periodic functions, that is, the smallest C^{*}-algebra of $L^{\infty}(\mathbb{R})$ containing all the functions $e_{\lambda}(x)=e^{i \lambda x}, \lambda \in \mathbb{R}$. It is well known (the standard references for these and other properties of $A P$ are $[3,11,12]$) that for every $f \in A P$,

1. there exists the Bohr mean value

$$
\mathbf{M}(f)=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} f(x) d x
$$

and
2. the Fourier coefficients $\widehat{f}(\lambda) \stackrel{\text { def }}{=} \mathbf{M}\left(f e_{-\lambda}\right)$ are different from zero for at most countably many values of $\lambda \in \mathbb{R}$.

Received by the editor March 12, 1997 and, in revised form, September 18, 1998.
1991 Mathematics Subject Classification. Primary 47A68, 47-04, 42A75.
Key words and phrases. Almost periodic matrix functions, factorization, explicit computation. The first author's research was partially supported by NSF Grant DMS-9800704.
The second author's research was started during a Research Experience for Undergraduates sponsored by the NSF at the College of William and Mary during the summer of 1995.

The set $\Omega(f)=\{\mu: \widehat{f}(\mu) \neq 0\}$ is called the Fourier spectrum of f, and

$$
\begin{equation*}
\sum_{\mu \in \Omega(f)} \widehat{f}(\mu) e_{\mu} \tag{1.1}
\end{equation*}
$$

is its (formal) Fourier series.
We say that $f \in A P_{W}$ if the Fourier series (1.1) converges absolutely:

$$
\sum_{\mu \in \Omega(f)}|\widehat{f}(\mu)|<\infty
$$

Finally, let

$$
A P^{ \pm}=\left\{f \in A P: \Omega(f) \subset \mathbb{R}_{ \pm}\right\} \quad \text { and } \quad A P_{W}^{ \pm}=A P^{ \pm} \cap A P_{W}
$$

Here, as usual, $\mathbb{R}_{ \pm}=\{x \in \mathbb{R}: \pm x \geq 0\}$.
For matrix functions f, conditions $f \in A P, A P^{ \pm}, A P_{W}$, etc. are understood entrywise, and $\mathbf{M}(f), \widehat{f}(\mu), \Omega(f)$ are defined by exactly the same formulas as for scalar functions.

Following [6], we introduce an $A P$ factorization of an $n \times n$ matrix function G as its representation in the form

$$
\begin{equation*}
G=G_{+} \Lambda G_{-} \tag{1.2}
\end{equation*}
$$

where $\Lambda(x)=\operatorname{diag}\left[e_{\lambda_{1}}, \ldots, e_{\lambda_{n}}\right]$,

$$
\begin{equation*}
G_{+}^{ \pm 1} \in A P^{+}, G_{-}^{ \pm 1} \in A P^{-} \tag{1.3}
\end{equation*}
$$

and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$. We say that (1.2) is an $A P_{W}$ factorization of G if conditions (1.3) are replaced by the (more restrictive) conditions $G_{+}^{ \pm 1} \in A P_{W}^{+}, G_{-}^{ \pm 1} \in A P_{W}^{-}$.

If G is $A P$ factorable, the numbers $\lambda_{1}, \ldots, \lambda_{n}$ are defined uniquely; they are called the partial $A P$ indices (of G). Of course, for an $A P\left(A P_{W}\right)$ factorization (1.2) to exist it is necessary that $G^{ \pm 1} \in A P$ (respectively, $A P_{W}$). However, this necessary condition is not sufficient and, except for the case of periodic matrix functions G (in which an $A P$ factorization by a simple change of variable reduces to the usual Wiener-Hopf factorization), the theory of $A P$ factorization is "under construction". Its connections with integral equations, completion problems, and signal processing are discussed in [6, 7], [17, 15, 1], and [14] respectively. Explicit formulas for the factors in (1.2) for certain special types of G are obtained in $[6,9,8]$. Most of them refer to matrices G of the following block triangular form:

$$
G_{f}=\left[\begin{array}{cc}
e_{\lambda} I_{m} & 0 \tag{1.4}\\
f & e_{-\lambda} I_{m}
\end{array}\right]
$$

(so that $n=2 m$) arising in the treatment of convolution type equations on finite intervals of length λ.

In particular, the following two statements were established in [6].
Lemma 1.1. Let f be an $A P_{W}$ matrix function, and let

$$
f_{0}=\sum_{\mu \in \Omega(f) \cap(-\lambda, \lambda)} \widehat{f}(\mu) e_{\mu}
$$

Then the matrices G_{f} and $G_{f_{0}}$ are AP $\left(A P_{W}\right)$ factorable only simultaneously, and their partial AP indices coincide.

Due to Lemma 1.1, for any $f \in A P_{W}$ in (1.4) we may suppose without loss of generality that $\Omega(f) \subset(-\lambda, \lambda)$.

Theorem 1.2. Let $\Omega(f) \cap(-\lambda, \lambda)$ consist of at most two points, say μ and σ. Then G_{f} is $A P_{W}$ factorable. Its partial $A P$ indices all equal zero if and only if $\mu \sigma=0$, $\widehat{f}(0)$ is invertible, or $\mu \sigma<0, \frac{\lambda}{\mu-\sigma} \in \mathbb{Z}$ and both $\widehat{f}(\mu), \widehat{f}(\sigma)$ are invertible.

The next logical step is to consider a trinomial f with $\Omega(f) \subset(-\lambda, \lambda)$. However, with no additional restrictions on the location of $\Omega(f)$ this remains an open problem. In this paper, we concentrate on the case $\Omega(f)=\{-\nu, 0, \alpha\}$, that is,

$$
\begin{equation*}
f=c_{-1} e_{-\nu}+c_{0}+c_{1} e_{\alpha}, \tag{1.5}
\end{equation*}
$$

where $\alpha, \nu>0$ and $\alpha+\nu=\lambda$.
If $\beta=\frac{\nu}{\alpha}$ is rational, then the matrix G_{f} is periodic, and its $A P_{W}$ factorization exists and can be easily constructed. Thus, we suppose in what follows that β is irrational. The next result applies to the case when the matrices c_{j} in (1.5) commute with each other. In this case there exists a similarity T such that

$$
\begin{equation*}
T^{-1} c_{j} T=\operatorname{diag}\left[c_{j 1}, \ldots, c_{j r}\right], \quad c_{j k} \in \mathbb{C}^{l_{k} \times l_{k}}, k=1, \ldots, r ; j=0, \pm 1 \tag{1.6}
\end{equation*}
$$

and each diagonal block $c_{j k}$ has a singleton spectrum (see [13, Section 4.4]):

$$
\sigma\left(c_{j k}\right)=\left\{\xi_{j k}\right\} \quad(j=0, \pm 1 ; k=1, \ldots r) .
$$

As in [2], we call $\left\{\xi_{j k}\right\}_{j=-1}^{1}$ the bonded eigenvalue triples of c_{j}.
Theorem 1.3. Let G_{f} be of the form (1.4) with f given by (1.5) and commuting coefficients c_{j}. Then G_{f} is AP factorable with zero partial AP indices if and only if, for all bonded triples $\left\{\xi_{-1, k}, \xi_{0, k}, \xi_{1, k}\right\}$,

$$
\begin{equation*}
\left|\xi_{1, k}^{\nu} \xi_{-1, k}^{\alpha}\right| \neq\left|\xi_{0, k}\right|^{\lambda} \quad(k=1, \ldots, r) \tag{1.7}
\end{equation*}
$$

In this form, Theorem 1.3 was established in [2, Theorem 7.2]; the case of invertible c_{j} was disposed of earlier in [9]. In fact, the result of [9] contains an additional important piece of information: if all c_{j} are invertible and (1.7) fails for at least one value of k, then G_{f} does not admit any $A P$ factorization, even if non-zero partial $A P$ indices are allowed. Also, it was shown in [16] that an $A P$ factorization with zero partial $A P$ indices of an $A P_{W}$ matrix function is automatically its $A P_{W}$ factorization. Hence, the following result holds.
Corollary 1.4. Let G_{f} be as in Theorem 1.3 and, in addition, let c_{0} be invertible. Then G_{f} is $A P_{W}$ factorable with zero partial AP indices if condition (1.7) holds, and is not AP factorable otherwise.

Of course, it would now be natural to consider an $A P$ factorization of G_{f} with trinomial f, pairwise commuting c_{j}, and no restrictions imposed on the invertibility of c_{0} and the values of partial $A P$ indices. We will see, however, that this problem embraces a general setting of a trinomial f with arbitrary (not necessarily commuting) coefficients c_{j} and is therefore too difficult to handle at the present stage of the development. Our paper is a report on several partial results on the $A P$ factorability of matrices (1.4), (1.5) with non-invertible c_{0}.

The paper is structured as follows. Section 2 -contains an auxiliary result on the factorization of block diagonal matrices. It also describes a procedure which allows us to replace a matrix of the form (1.4), (1.5) with invertible c_{-1} (and no commutativity conditions on c_{j}) by another matrix of the same type without changing its factorability properties. This procedure is, in fact, a variation of the one introduced in [2] for matrices (1.4) with a finite number (not limited to three) of
points μ_{j} in $\Omega(f) \cap(-\lambda, \lambda)$ but pairwise commuting $\widehat{f}\left(\mu_{j}\right)$. As a direct application of this procedure, $A P_{W}$ factorability is established for matrices (1.4), (1.5) with $m=2$, invertible c_{-1} (or c_{1}) and nilpotent $c_{0} c_{-1}^{-1}$ (respectively, $c_{0} c_{1}^{-1}$).

Section 3 contains necessary and sufficient factorability conditions for matrices (1.4), (1.5) with commuting c_{j} under certain additional restrictions on their Jordan structure. This covers, in particular, all matrices of size $m \leq 3$, invertible c_{1} or c_{-1} of size $m \leq 4$, and matrices of arbitrary size, provided that each eigenvalue of at least one of the c_{j} corresponds to one Jordan cell. An application to difference equations is given.

In Section 4, we concentrate on 4×4 matrices c_{j}. An example is given explaining why this case cannot be covered in general before the $A P$ factorability of matrices (1.4), (1.5) with arbitrary invertible non-commuting c_{j} is understood. All possible cases are classified, and those for which the $A P$ factorability remains unknown are singled out.

Proofs of the results in Sections 3 and 4 are partially theoretical and partially consist in exhausting a large number of cases in which an $A P_{W}$ factorization can be constructed explicitly. These cases are relegated to Section 5 the supplement at the end of this volume, where final formulas are listed. Of course, they can be checked by straightforward calculations. We emphasize, however, that a symbolic manipulation Maple program was used to obtain these formulas, and without it this paper could hardly have been completed.

2. Auxiliary results

Suppose G is a block diagonal $A P$ matrix: $G=\operatorname{diag}\left[G_{1}, G_{2}\right]$. If its diagonal blocks G_{1}, G_{2} are $A P$ factorable, then G itself is $A P$ factorable. Moreover, an $A P$ factorization of G can be obtained by "pasting together" $A P$ factorizations of G_{1} and $G_{2}: G_{1}=G_{+}^{(1)} \Lambda^{(1)} G_{-}^{(1)}, G_{2}=G_{+}^{(2)} \Lambda^{(2)} G_{-}^{(2)}$ imply

$$
G=\operatorname{diag}\left[G_{+}^{(1)}, G_{+}^{(2)}\right] \operatorname{diag}\left[\Lambda^{(1)}, \Lambda^{(2)}\right] \operatorname{diag}\left[G_{-}^{(1)}, G_{-}^{(2)}\right]
$$

It is natural to ask whether the converse is true. The answer is positive provided that $G \in A P_{W}$ and partial $A P$ indices of G equal zero. Indeed, a matrix $F \in$ $A P_{W}$ admits an $A P$ factorization with zero partial $A P$ indices if and only if the corresponding Toeplitz operator T_{F} is invertible on L^{2} [5] (see also [7]). Since T_{G} is a direct sum of $T_{G_{1}}$ with $T_{G_{2}}$, the invertibility of T_{G} is equivalent to simultaneous invertibility of $T_{G_{1}}$ and $T_{G_{2}}$.

We are not aware of any equivalent of $A P$ factorability (with non-zero partial $A P$ indices) in operator terms. Probably, the answer to the question is still positive, but we restrict our consideration to a somewhat weaker version.

Lemma 2.1. Let $G=\operatorname{diag}\left[G_{1}, G_{2}\right]$. If G and one of its diagonal blocks G_{1}, G_{2} are AP factorable, then the other diagonal block is also AP factorable.

Proof. Consider first the case when $G_{1}=1$. Then an $A P$ factorization of G can be rewritten as

$$
F_{+}\left[\begin{array}{cc}
1 & 0 \tag{2.1}\\
0 & G_{2}
\end{array}\right]=\Lambda G_{-},
$$

where $F_{+}=G_{+}^{-1} \in A P^{+}$. Denote $F_{+}=\left(f_{i j}\right)_{i, j=1}^{n}$. From (2.1), $e_{-\lambda_{j}} f_{j 1} \in A P^{-}$, so that

$$
\begin{equation*}
\Omega\left(f_{j 1}\right) \subset\left[0, \lambda_{j}\right] . \tag{2.2}
\end{equation*}
$$

In particular, $f_{j 1}=0$ for all j (if there are any) such that $\lambda_{j}<0$. Rewriting (2.1) as

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & G_{2}^{-1}
\end{array}\right] G_{+} \Lambda=G_{-}^{-1},
$$

we find similarly that

$$
\begin{equation*}
\Omega\left(g_{1 j}\right) \subset\left[0,-\lambda_{j}\right], \tag{2.3}
\end{equation*}
$$

where $G_{+}=\left(g_{i j}\right)_{i, j=1}^{n}$. Therefore, $g_{1 j}=0$ for all j (if there are any) such that $\lambda_{j}>0$. Observe also that $G_{+} F_{+}=I$ implies that $\sum_{j=1}^{n} g_{1 j} f_{j 1}=1$. Since for nonzero λ_{j} at least one of the entries $g_{1 j}, f_{j 1}$ is equal to zero, the latter equality proves the existence of zero partial $A P$ indices λ_{j}. Due to (2.2), (2.3), the corresponding functions $g_{1 j}, f_{j 1}$ are constant, and for at least one value of $j, g_{1 j} f_{j 1} \neq 0$.

Applying an appropriate permutation of columns of G_{+}and rows of G_{-}, we may suppose without loss of generality that $\lambda_{1}=0, g_{11}=c \neq 0, f_{11}=d \neq 0$. Partitioning G_{+}, F_{+}as

$$
G_{+}=\left[\begin{array}{cc}
c & g_{1}^{+} \\
g_{2}^{+} & G_{2}^{+}
\end{array}\right], \quad F_{+}=\left[\begin{array}{cc}
d & f_{1}^{+} \\
f_{2}^{+} & F_{2}^{+}
\end{array}\right],
$$

we conclude that $c=\operatorname{det} F_{2}^{+} / \operatorname{det} F_{+}=\operatorname{det} F_{2}^{+} \operatorname{det} G_{+}$. Since $c \neq 0$, the matrix F_{2}^{+} is invertible in $A P^{+}$simultaneously with G_{+}. From (2.1) and (2.2) it follows that the left-upper entry of G_{-}and $H_{-}=G_{-}^{-1}$ equals d and c, respectively. Thus,

$$
G_{-}=\left[\begin{array}{cc}
d & g_{1}^{-} \\
g_{2}^{-} & G_{2}^{-}
\end{array}\right], H_{-}=\left[\begin{array}{cc}
c & h_{1}^{-} \\
h_{2}^{-} & H_{2}^{-}
\end{array}\right],
$$

and $c=\operatorname{det} G_{2}^{-} / \operatorname{det} G_{-}$. Since $c \neq 0$, the matrix G_{2}^{-}is invertible in $A P^{-}$together with G_{-}. Now partition $\Lambda=\left[\begin{array}{cc}1 & 0 \\ 0 & \Lambda_{2}\end{array}\right]$. Then (2.1) yields $F_{2}^{+} G_{2}=\Lambda_{2} G_{2}^{-}$, or $G_{2}=\left(F_{2}^{+}\right)^{-1} \Lambda_{2} G_{2}^{-}$. Since $\left(F_{2}^{+}\right)^{ \pm 1} \in A P^{+}$and $\left(G_{2}^{-}\right)^{ \pm 1} \in A P^{-}$, the latter formula delivers an $A P$ factorization of G_{2}. This proves the desired statement in the case $G_{1}=1$.

If $G_{1}=e_{\lambda}$, then the matrix $e_{-\lambda} G=\operatorname{diag}\left[1, e_{-\lambda} G_{2}\right]$ is $A P$ factorable together with G. According to the already proven particular case, $e_{-\lambda} G_{2}$ is $A P$ factorable. But then G_{2} is $A P$ factorable as well.

An induction argument allows us to consider G_{1} of the form $\operatorname{diag}\left[e_{\lambda_{1}}, \ldots, e_{\lambda_{k}}\right]=$ Λ_{1}. Finally, for an arbitrary $A P$ factorable $G_{1}=G_{+}^{(1)} \Lambda_{1} G_{-}^{(1)}$ we can write

$$
G=\operatorname{diag}\left[G_{+}^{(1)}, I\right] \operatorname{diag}\left[\Lambda_{1}, G_{2}\right] \operatorname{diag}\left[G_{-}^{(1)}, I\right]
$$

and consider an (AP factorable) matrix $\operatorname{diag}\left[\Lambda_{1}, G_{2}\right]$ instead of the original matrix G.

Another technical tool we need applies to matrix functions G_{f} with a trinomial f containing an invertible c_{-1} coefficient.

Lemma 2.2. Let G be of the form (1.4) with f given by (1.5). If c_{-1} is invertible, then G is $A P\left(A P_{W}\right)$ factorable only simultaneously with (and has the same partial $A P$ indices as) the matrix function

$$
G_{1}=\left[\begin{array}{cc}
e_{\lambda_{1}} I_{m} & 0 \tag{2.4}\\
f_{1} & e_{-\lambda_{1}} I_{m}
\end{array}\right]
$$

where

$$
\begin{equation*}
f_{1}=c_{-1}^{(1)} e_{-\nu_{1}}+c_{0}^{(1)}+c_{1}^{(1)} e_{\alpha_{1}} \tag{2.5}
\end{equation*}
$$

$$
\begin{gathered}
c_{-1}^{(1)}=(-1)^{s}\left(c_{-1}^{-1} c_{0}\right)^{s+1}, c_{0}^{(1)}=c_{-1}^{-1} c_{1}, c_{1}^{(1)}=(-1)^{s+1}\left(c_{-1}^{-1} c_{0}\right)^{s+2}, \\
\lambda_{1}=\nu, \nu_{1}=\alpha-s \nu, \alpha_{1}=(s+1) \nu-\alpha,
\end{gathered}
$$

and finally, s is the integral part of $\frac{\alpha}{\nu}: s \in \mathbb{Z}$ and $s<\frac{\alpha}{\nu}<s+1$.
Proof. It suffices to construct matrix functions X_{+}and X_{-}such that $X_{+}^{ \pm 1} \in A P_{W}^{+}$, $X_{-}^{ \pm 1} \in A P_{W}^{-}$and

$$
\begin{equation*}
X_{+} G X_{-}=G_{1} \tag{2.6}
\end{equation*}
$$

To this end, let

$$
\begin{align*}
& X_{+}=\left[\begin{array}{cc}
c_{-1}^{-1} f e_{\nu} & -e_{\lambda+\nu} I \\
e_{-\lambda-\nu} I+\left(g-e_{-\lambda} I\right) c_{-1}^{-1} f & I-g e_{\lambda}
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & c_{-1}^{-1}
\end{array}\right], \\
& X_{-}=\left[\begin{array}{cc}
I & 0 \\
0 & c_{-1}
\end{array}\right]\left[\begin{array}{cc}
e_{-\alpha} I+\sum_{j=1}^{s}(-1)^{j}\left(c_{-1}^{-1} c_{0}\right)^{j} e_{j \nu-\alpha} & I \\
-I & 0
\end{array}\right], \tag{2.7}
\end{align*}
$$

where $g=c_{-1}^{-1} c_{1}-\sum_{j=1}^{s+2}(-1)^{j}\left(c_{-1}^{-1} c_{0}\right)^{j} e_{(j-1) \nu-\alpha}$. Directly from the definition of s it follows that $X_{-} \in A P^{-}$. Since $\operatorname{det} X_{-}=\operatorname{det} c_{-1}$ is a non-zero constant, X_{-}^{-1} belongs to $A P^{-}$together with X_{-}.

A straightforward computation shows that

$$
\begin{aligned}
X_{+} \dot{G} X_{-}= & {\left[\begin{array}{cc}
c_{-1}^{-1} f e_{\nu} & -e_{\lambda+\nu} I \\
e_{-\lambda-\nu} I+\left(g-e_{-\lambda} I\right) c_{-1}^{-1} f & I-g e_{\lambda}
\end{array}\right] } \\
& \times\left[\begin{array}{cc}
e_{\lambda} I & 0 \\
c_{-1}^{-1} f & e_{-\lambda} I
\end{array}\right]\left[\begin{array}{cc}
e_{-\alpha} I+\sum_{j=1}^{s}(-1)^{j}\left(c_{-1}^{-1} c_{0}\right)^{j} e_{j \nu-\alpha} & I \\
-I
\end{array}\right] \\
= & {\left[\begin{array}{cc}
c_{-1}^{-1} f e_{\nu} & -e_{\lambda+\nu} I \\
e_{-\lambda-\nu} I+\left(g-e_{-\lambda} I\right) c_{-1}^{-1} f & I-g e_{\lambda}
\end{array}\right] } \\
& \times\left[\begin{array}{cc}
e_{\nu} I+\sum_{j=1}^{s}(-1)^{j}\left(c_{-1}^{-1} c_{0}\right)^{j} e_{(j+1) \nu} & e_{\lambda} I \\
c_{-1}^{-1} e_{-\alpha} f+c_{-1}^{-1} f \sum_{j=1}^{s}(-1)^{j}\left(c_{-1}^{-1} c_{0}\right)^{j} e_{j \nu-\alpha}-e_{-\lambda} I & c_{-1}^{-1} f
\end{array}\right] \\
= & \left(y_{i j}\right)_{i, j=1}^{2},
\end{aligned}
$$

where

$$
\begin{aligned}
y_{11}= & c_{-1}^{-1} f e_{2 \nu}+c_{-1}^{-1} f \sum_{j=1}^{s}(-1)^{j}\left(c_{-1}^{-1} c_{0}\right)^{j} e_{(j+2) \nu}-c_{-1}^{-1} f e_{2 \nu} \\
& -c_{-1}^{-1} f \sum_{j=1}^{s}(-1)^{j}\left(c_{-1}^{-1} c_{0}\right)^{j} e_{(j+2) \nu}+e_{\nu} I=e_{\nu} I, \\
y_{12}= & c_{-1}^{-1} f e_{\lambda+\nu}-c_{-1}^{-1} f e_{\lambda+\nu}=0, \\
y_{22}= & e_{-\nu} I+\left(g e_{\lambda}-I\right) c_{-1}^{-1} f+\left(I-g e_{\lambda}\right) c_{-1}^{-1} f=e_{-\nu} I,
\end{aligned}
$$

and finally,

$$
\begin{aligned}
y_{21}= & \left(e_{-\lambda-\nu} I+\left(g-e_{-\lambda} I\right) c_{-1}^{-1} f\right)\left(e_{\nu} I+\sum_{j=1}^{s}(-1)^{j}\left(c_{-1}^{-1} c_{0}\right)^{j} e_{(j+1) \nu}\right) \\
& +\left(I-g e_{\lambda}\right)\left(c_{-1}^{-1} e_{-\alpha} f+c_{-1}^{-1} f \sum_{j=1}^{s}(-1)^{j}\left(c_{-1}^{-1} c_{0}\right)^{j} e_{j \nu-\alpha}-e_{-\lambda} I\right) \\
= & e_{-\lambda} I+\sum_{j=1}^{s}(-1)^{j}\left(c_{-1}^{-1} c_{0}\right)^{j} e_{j \nu-\lambda}+\left(g-e_{-\lambda} I\right) \\
& \times\left(c_{-1}^{-1} f e_{\nu}+c_{-1}^{-1} f \sum_{j=1}^{s}(-1)^{j}\left(c_{-1}^{-1} c_{0}\right)^{j} e_{(j+1) \nu}\right. \\
= & e_{-\lambda} I+\sum_{j=1}^{s}(-1)^{j}\left(c_{-1}^{-1} c_{0}\right)^{j} e_{j \nu-\lambda}+g-e_{-\lambda} I \\
= & \left.\sum_{j=1}^{s}(-1)^{j}\left(c_{-1}^{-1} c_{0}\right)^{j} e_{j \nu-\lambda}+c_{-1}^{-1} c_{1}-\sum_{j=1}^{s+2}(-1)^{j}\left(c_{-1}^{-1} c_{0}\right)^{j} e_{(j-1) \nu-\alpha}^{s}(-1)^{j}\left(c_{-1}^{-1} c_{0}\right)^{j} e_{(j+1) \nu}+I\right) \\
= & (-1)^{s}\left(c_{-1}^{-1} c_{0}\right)^{s+1} e_{s \nu-\alpha}+c_{-1}^{-1} c_{1}+(-1)^{s+1}\left(c_{-1}^{-1} c_{0}\right)^{s+2} e_{(s+1) \nu-\alpha}=f_{1} .
\end{aligned}
$$

This implies (2.6). Since $\operatorname{det} G=\operatorname{det} G_{1}=1$, from (2.6) it follows, in particular, that $\operatorname{det} X_{+}=\left(\operatorname{det} X_{-}\right)^{-1}$ is a non-zero constant. It remains to show that $X_{+} \in$ $A P^{+}$, because then $X_{+}^{-1} \in A P^{+}$as well. Three blocks of X_{+}are obviously in $A P^{+}$. The remaining (left-lower) block can be rewritten as

$$
\begin{aligned}
& e_{-\lambda-\nu} I+\left(g-e_{-\lambda} I\right) c_{-1}^{-1} f \\
& \quad=e_{-\lambda-\nu} I+c_{-1}^{-1} c_{1} e_{-\nu}+c_{-1}^{-1} c_{1} c_{-1}^{-1} c_{0}+\left(c_{-1}^{-1} c_{1}\right)^{2} e_{\alpha} \\
& \quad-\sum_{j=1}^{s+2}(-1)^{j}\left(c_{-1}^{-1} c_{0}\right)^{j} e_{(j-2) \nu-\alpha}-\sum_{j=1}^{s+2}(-1)^{j}\left(c_{-1}^{-1} c_{0}\right)^{j+1} e_{(j-1) \nu-\alpha} \\
& \quad-\sum_{j=1}^{s+2}(-1)^{j}\left(c_{-1}^{-1} c_{0}\right)^{j} e_{(j-1) \nu}\left(c_{-1}^{-1} c_{1}\right)-e_{-\lambda-\nu} I-c_{-1}^{-1} c_{0} e_{-\lambda}-c_{-1}^{-1} c_{1} e_{-\nu} \\
& =c_{-1}^{-1} c_{1} c_{-1}^{-1} c_{0}+\left(c_{-1}^{-1} c_{1}\right)^{2} e_{\alpha}-\sum_{j=1}^{s+2}(-1)^{j}\left(c_{-1}^{-1} c_{0}\right)^{j} e_{(j-1) \nu}\left(c_{-1}^{-1} c_{1}\right) \\
& \quad+\left(c_{-1}^{-1} c_{0}\right) e_{-\lambda}-(-1)^{s}\left(c_{-1}^{-1} c_{0}\right)^{s+3} e_{(s+1) \nu-\alpha}-\left(c_{-1}^{-1} c_{0}\right) e_{-\lambda} .
\end{aligned}
$$

Cancelling out the terms $\pm\left(c_{-1}^{-1} c_{0}\right) e_{-\lambda}$ in the last expression, we see that this block belongs to $A P^{+}$as well.

Formula (2.6) is a particular case of the transformation introduced in [2] for an arbitrary $A P$ polynomial (not necessarily a trinomial) f with invertible Fourier coefficient corresponding to the leftmost point in $\Omega(f) \cap(-\lambda, \lambda)$. However, in [2] only the case of commuting coefficients was considered. Also, formulas (2.7) for a trinomial case are more explicit than the general formulas of [2].

The resulting matrix G_{1} in general has the same structure as the original matrix $G: \Omega\left(f_{1}\right) \subset\left\{-\nu_{1}, 0, \alpha_{1}\right\}$, where $\alpha_{1}, \nu_{1}>0, \alpha_{1}+\nu_{1}=\lambda_{1}$ and $\beta_{1}=\nu_{1} / \alpha_{1}$ is irrational together with β. In some instances, however, G_{1} may be easier to deal with. One such situation is discussed in the next theorem; other applications of Lemma 2.2 can be found in subsequent sections.
Theorem 2.3. Let the matrix G be given by (1.4), (1.5) with c_{-1} invertible, $c_{0} c_{-1}^{-1}$ nilpotent and having all Jordan cells of the size at most $\left[\frac{\alpha}{\nu}\right]+2$. Then 1) G is $A P_{W}$ factorable, and 2) its partial AP indices equal zero if and only if c_{1} is invertible.

Proof. Due to Lemma 2.2, we may consider the matrix (2.4) instead of G. The conditions imposed on the Jordan structure of $c_{0} c_{-1}^{-1}$ imply that $\left(c_{-1}^{-1} c_{0}\right)^{s+2}=0$. Thus, f_{1} in (2.4) is in fact a binomial with $\Omega\left(f_{1}\right) \subset\left\{-\nu_{1}, 0\right\}$. According to Theorem 1.2, the matrix G_{1} is $A P_{W}$ factorable, and its partial $A P$ indices equal zero if and only if the constant term $c_{-1}^{-1} c_{1}$ of f_{1} is invertible. The latter condition is equivalent to the invertibility of c_{1}.

Recall now the duality between an $A P$ factorization (1.2) of G_{f} and that of G_{f} :

$$
\begin{equation*}
G_{f^{*}}=\left(J G_{-}^{*}\right) \Lambda^{*}\left(G_{+}^{*} J\right), \tag{2.8}
\end{equation*}
$$

where $J=\left[\begin{array}{ll}0 & I \\ I & 0\end{array}\right]$. From (2.8) and Theorem 2.3 follows
Corollary 2.4. Let the matrix G be given by (1.4), (1.5) with c_{1} invertible, $c_{0} c_{1}^{-1}$ nilpotent and having all Jordan cells of the size at most $\left[\frac{\nu}{\alpha}\right]+2$. Then G is $A P_{W}$ factorable, and its partial AP indices equal zero if and only if c_{-1} is invertible.

Observe that the condition on the size of Jordan cells is satisfied automatically if $m=2$. Hence, the following statement holds.

Corollary 2.5. Let the matrix G be given by (1.4), (1.5) with $m=2$, let one of the coefficients $c_{ \pm 1}$ be non-singular, and let the corresponding product $c_{0} c_{ \pm 1}^{-1}$ be nilpotent. Then 1) G is $A P_{W}$ factorable, and 2) its partial $A P$ indices equal zero if and only if the second of the coefficients $c_{ \pm 1}$ is invertible as well.

3. Main result

We now turn to matrices (1.4) with the off-diagonal block (1.5) having pairwise commuting coefficients $c_{ \pm 1}, c_{0}$. The representation (1.6) is not unique, and we choose one with the maximal possible number r. of diagonal blocks. Each triple $\left\{c_{-1, k}, c_{0 k}, c_{1 k}\right\}$ is then irreducible, that is, does not allow a further reduction to a block diagonal form with the help of a common similarity. Of course, the commutativity property of $\left\{c_{-1}, c_{0}, c_{1}\right\}$ is inherited by the triples $\left\{c_{-1, k}, c_{0 k}, c_{1 k}\right\}$.

The ambiguity of T also allows us, for each $k=1, \ldots, r$, to put one of the matrices $c_{j k}$ (with our choice of $j=0, \pm 1$) in its Jordan canonical form. If, for a
given k, at least one of the matrices $c_{j k}$ is unicellular (that is, its canonical Jordan form consists of only one cell), then for such a T all the matrices $c_{j k}$ with the same k automatically become upper triangular and, in addition, have a Toeplitz structure. The latter means that (p, q)-entry of each of the matrices $c_{-1, k}, c_{0, k}, c_{1, k}$ is the same as its $(p+1, q+1)$-entry ($p, q=1, \ldots, l_{k}-1$). For $l_{k}>1$, the common value of the entries right above the main diagonal in $c_{j k}$ for such k will be denoted by $\eta_{j k}$ (of course, the common value of the diagonal elements of the $c_{j k}$ in this case is $\left.\xi_{j k}\right)$.

With this notation at hand, we are ready to formulate our main result.
Theorem 3.1. Let G be given by (1.4), (1.5) with pairwise commuting coefficients $c_{ \pm 1}, c_{0}$. Suppose that in (1.6) for each $k=1, \ldots, r$ at least one of the following conditions holds: 1) $\xi_{0 k} \neq 0$, 2) $\xi_{1, k} \xi_{-1, k} \neq 0$, 3) one of the blocks $c_{ \pm 1, k}, c_{0 k}$ is unicellular, 4) $\left.l_{k} \leq 3,5\right) \xi_{1, k}$ or $\xi_{-1, k}$ differs from zero and $l_{k} \leq 4$. Then G is not $A P$ factorable if, for at least one value of k,

$$
\begin{equation*}
\left|\xi_{1, k}^{\nu} \xi_{-1, k}^{\alpha}\right|=\left|\xi_{0 k}\right|^{\lambda} \neq 0, \text { or } \xi_{-1, k}=\xi_{0 k}=\xi_{1, k}=0 \text { and }\left|\eta_{1, k}^{\nu} \eta_{-1, k}^{\alpha}\right|=\left|\eta_{0 k}\right|^{\lambda} \neq 0 \tag{3.1}
\end{equation*}
$$

and is $A P_{W}$ factorable otherwise.
Proof. Using (1.6), introduce a matrix

$$
\left[\begin{array}{cc}
T^{-1} & 0 \\
0 & T^{-1}
\end{array}\right] G\left[\begin{array}{cc}
T & 0 \\
0 & T
\end{array}\right]=\left[\begin{array}{cc}
e_{\lambda} I_{m} & 0 \\
\operatorname{diag}\left[c_{-1, k} e_{-\nu}+c_{0 k}+c_{1, k} e_{\alpha}\right] & e_{-\lambda} I_{m}
\end{array}\right]
$$

having the same factorization properties as G. By an appropriate permutation of its rows and columns, this matrix can be further rewritten as a direct sum of the blocks

$$
G_{k}=\left[\begin{array}{cc}
e_{\lambda} I_{l_{k}} & 0 \\
c_{-1, k} e_{-\nu}+c_{0 k}+c_{1, k} e_{\alpha} & e_{-\lambda} I_{l_{k}}
\end{array}\right]
$$

$k=1, \ldots r$. Let $R=\{1, \ldots, r\}$ and denote by R_{0} the subset of those $r \in R$ such that $\xi_{1, k}=\xi_{-1, k}=\xi_{0 k}=0, l_{k}>1$ and (at least) one of the blocks $c_{ \pm 1, k}, c_{0 k}$ is unicellular. We now partition R into a disjoint union $\bigcup_{j=1}^{4} R_{j}$, where

$$
\begin{aligned}
& R_{1}=\left\{k:\left|\xi_{1, k}^{\nu} \xi_{-1, k}^{\alpha}\right|=\left|\xi_{0 k}\right|^{\lambda} \neq 0\right\} \\
& R_{2}=\left\{k \in R_{0}:\left|\eta_{1, k}^{\nu} \eta_{-1, k}^{\alpha}\right|=\left|\eta_{0 k}\right|^{\lambda} \neq 0\right\}, \\
& R_{3}=R_{0} \backslash R_{2}, \\
& R_{4}=R \backslash\left(R_{1} \cup R_{0}\right) .
\end{aligned}
$$

For every $k \in R_{0}$, yet another permutation of rows and columns allows us to represent G_{k} as a direct sum of $\left[\begin{array}{cc}e_{\lambda} & 0 \\ 0 & e_{-\lambda}\end{array}\right]$ with

$$
G_{k}^{\prime}=\left[\begin{array}{cc}
e_{\lambda} I_{l_{k}-1} & 0 \\
c_{-1, k}^{\prime} e_{-\nu}+c_{0 k}^{\prime}+c_{1, k}^{\prime} e_{\alpha} & e_{-\lambda} I_{l_{k}-1}
\end{array}\right]
$$

Here $c_{j k}^{\prime}$ are obtained from $c_{j k}$ by deleting its first column and last row. The Toeplitz structure of $c_{j k}$ is inherited by $c_{j k}^{\prime}$. In particular, the $c_{j k}^{\prime}$ pairwise commute and $\sigma\left(c_{j k}^{\prime}\right)=\left\{\eta_{j k}\right\}\left(j=0, \pm 1 ; k \in R_{0}\right)$.

Denote by $G^{(1)}$ the direct sum of all the blocks $G_{k}, k \in R_{1}$, and $G_{k}^{\prime}, k \in R_{2}$. Let $G^{(2)}$ be a direct sum of all $G_{k}\left(k \in R_{4}\right), G_{k}^{\prime}\left(k \in R_{3}\right)$, and $\left|R_{2}\right|$ copies of
the diagonal blocks $\left[\begin{array}{cc}e_{\lambda} & 0 \\ 0 & e_{-\lambda}\end{array}\right]$. Then G can be put in the form $G^{(1)} \oplus G^{(2)}$ by an appropriate permutation of its rows and columns. In turn, $G^{(1)}$ will become a permutation of a matrix of the type (1.4) with $f=b_{-1} e_{-\nu}+b_{0}+b_{1} e_{\alpha}$ and $b_{j}=\left(\bigoplus_{k \in R_{1}} c_{j k}\right) \oplus\left(\bigoplus_{k \in R_{2}} c_{j k}^{\prime}\right)$.

In terms of the sets R_{j}, this theorem claims that G is $A P_{W}$ factorable if $R_{1} \cup R_{2}=$ \emptyset, and is not $A P$ factorable otherwise. This follows from Lemma 2.1, provided that $G^{(2)}$ is $A P_{W}$ factorable and, for $R_{1} \cup R_{2} \neq \emptyset, G^{(1)}$ is not $A P$ factorable. The latter statement holds due to Corollary 1.4. It remains to prove the former. We will do this by showing that each direct summand of $G^{(2)}$ is $A P_{W}$ factorable. There are five types of these summands:
(i) diagonal blocks $\left[\begin{array}{cc}e_{\lambda} & 0 \\ 0 & e_{-\lambda}\end{array}\right]$,
and matrices (1.4) with f given by (1.5), pairwise commuting $c_{ \pm 1}, c_{0}$ (slightly abusing the notation, we again denote their size by m), singleton spectra $\sigma\left(c_{j}\right)=$ $\left\{\xi_{j}\right\}(j= \pm 1,0)$ for which
(ii) $\left|\xi_{1}^{\nu} \xi_{-1}^{\alpha}\right| \neq\left|\xi_{0}\right|^{\lambda}$,
(iii) $\xi_{0}=0$, exactly one of $\xi_{ \pm 1}$ differs from zero and (at least) one of the blocks $c_{ \pm 1}, c_{0}$ is unicellular,
(iv) $\xi_{0}=0$, exactly one of $\xi_{ \pm 1}$ differs from zero, and $m \leq 4$,
(v) $\xi_{0}=\xi_{1}=\xi_{-1}=0$ and $m \leq 3$.

Indeed, the blocks G_{k} with $k \in R_{1}$ have no impact on $G^{(2)}, k \in R_{2}$ generate only summands of type (i), $k \in R_{3}$ yield summands of type (i) and (ii) or (iii), and $k \in R_{4}$ produce summands of types (ii)-(v).

The summands of type (i) are trivially $A P_{W}$ fáctorable (with partial $A P$ indices $\pm \lambda$). The summands of type (ii) are $A P_{W}$ factorable (with zero partial $A P$ indices) according to Theorem 1.3. It remains to consider matrices (1.4) of types (iii)-(v).

In cases (iii) and (iv) we may without loss of generality suppose that $\xi_{1}=0$, $\xi_{-1} \neq 0$; otherwise, $G_{f^{*}}$ can be considered instead of G_{f}. If in addition, $c_{0}=0$ or $c_{1}=0$, then f is a binomial and the corresponding matrix (1.4) is $A P_{W}$ factorable due to Theorem 1.2. This happens, in particular, if $m=1$.

If all three coefficients of f differ from zero, we consider the matrix (2.4). It can happen that $c_{0}^{s+2}=0$, in which case the resulting block (2.5) is a binomial. Applying Theorem 1.2 and Lemma 2.2, we conclude that (2.4), and therefore (1.4), are $A P_{W}$ factorable. If $c_{0}^{s+2} \neq 0$, we consider cases (iii) and (iv) separately.
(iii) The matrices c_{j} have an upper triangular Toeplitz structure which is inherited by the coefficients $c_{j}^{(1)}$ of (2.5). Hence,

$$
m>\operatorname{rank} c_{0}^{(1)}=\operatorname{rank} c_{1}
$$

and

$$
m>\operatorname{rank} c_{-1}^{(1)}=\operatorname{rank} c_{0}^{s+1}>\operatorname{rank} c_{1}^{(1)}=\operatorname{rank} c_{0}^{s+2}>0
$$

Let $q=\max \left\{\operatorname{rank} c_{0}^{(1)}, \operatorname{rank} c_{-1}^{(1)}\right\}, p=m-q$. Then both p and q are strictly positive. By a permutation of its rows and columns, the matrix G_{1} can be reduced to the form

$$
\left[\begin{array}{cc}
e_{\nu} I_{p} & 0 \tag{3.2}\\
0 & e_{-\nu} I_{p}
\end{array}\right] \oplus\left[\begin{array}{cc}
e_{\nu} I_{q} & 0 \\
f_{2} & e_{-\nu} I_{q}
\end{array}\right]
$$

where

$$
\begin{equation*}
f_{2}=c_{-1}^{(2)} e_{-\nu_{1}}+c_{0}^{(2)}+c_{1}^{(2)} e_{\alpha_{1}} \tag{3.3}
\end{equation*}
$$

and the matrices $c_{j}^{(2)}$ are obtained from $c_{j}^{(1)}$ by deleting their first p columns and last p rows. It suffices to prove now that the second direct summand in (3.2) is $A P_{W}$ factorable.

If rank $c_{0}^{(1)} \geq \operatorname{rank} c_{-1}^{(1)}$, this summand falls into type (ii). In the opposite case, this is again a matrix of type (iii), but its size is strictly smaller than that of the original matrix: $q<m$. By induction we now conclude that all matrices of type (iii) are $A P_{W}$ factorable.
(iv) The case of unicellular c_{0} is covered by (iii). Since $m \leq 4$ and $c_{0}^{s+2} \neq 0$, the only remaining case is $s=0, m=4$ and c_{0} consisting of one 3×3 and one 1×1 Jordan cell. The same Jordan structure is possessed by the matrix $c_{-1}^{-1} c_{0}$. Without loss of generality we may suppose that in (2.5)

$$
c_{-1}^{(1)}=c_{-1}^{-1} c_{0}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \tag{3.4}\\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Then

$$
c_{1}^{(1)}=-\left(c_{-1}^{-1} c_{0}\right)^{2}=\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

The matrix $c_{0}^{(1)}=c_{-1}^{-1} c_{1}$ is nilpotent and commutes with (3.4). Thus,

$$
c_{0}^{(1)}=\left[\begin{array}{llll}
0 & z & u & b \\
0 & 0 & z & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & a & 0
\end{array}\right] .
$$

If $a=b=0$, then the matrix G_{1} can be split into a direct sum of $\left[\begin{array}{cc}e_{\nu} I_{2} & 0 \\ 0 & e_{-\nu} I_{2}\end{array}\right]$ and $G_{2}=\left[\begin{array}{cc}e_{\nu} I_{2} & 0 \\ f_{2} & e_{-\nu} I_{2}\end{array}\right]$, where f_{2} is given by (3.3) with

$$
c_{-1}^{(2)}=I_{2}, c_{0}^{(2)}=\left[\begin{array}{ll}
z & u \\
0 & z
\end{array}\right], c_{1}^{(2)}=\left[\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right] .
$$

The matrix G_{2} is of type (ii) or (iii) (depending on whether or not z is zero), and therefore $A P_{W}$ factorable. Of course, G_{1} is $A P_{W}$ factorable together with G_{2}.

If a or b differs from zero, represent G_{1} as a direct sum of $\operatorname{diag}\left[e_{\nu}, e_{-\nu}\right]$ with $G_{3}=\left[\begin{array}{cc}e_{\nu} I_{3} & 0 \\ f_{3} & e_{-\nu} I_{3}\end{array}\right]$, where $f_{3}=c_{-1}^{(3)} e_{-\nu_{1}}+c_{0}^{(3)}+c_{1}^{(3)} e_{\alpha_{1}}$ and

$$
c_{-1}^{(3)}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right], c_{0}^{(3)}=\left[\begin{array}{lll}
z & u & b \\
0 & z & 0 \\
0 & a & 0
\end{array}\right], c_{1}^{(3)}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

The explicit $A P_{W}$ factorization of G_{3} is shown in Appendix A of the supplement. Hence, all matrices of type (iv) are $A P_{W}$ factorable.

Finally, consider the remaining type (v). If $m \leq 2$, then each matrix c_{j} either is unicellular or equals zero. In both cases, an $A P_{W}$ factorization exists. Therefore, we may suppose that $m=3$. Excluding another trivial case $c_{0}=0$ (in which f is a binomial), we are left with the only possible Jordan structure of c_{0} : one 2×2 and one 1×1 block. Then, without loss of generality,

$$
c_{0}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The matrices $c_{ \pm 1}$ commute with c_{0} and are nilpotent. Therefore,

$$
c_{ \pm 1}=\left[\begin{array}{ccc}
0 & y_{ \pm} & x_{ \pm} \\
0 & 0 & 0 \\
0 & z_{ \pm} & 0
\end{array}\right]
$$

The matrix G splits into a direct sum of $\operatorname{diag}\left[e_{\lambda}, e_{-\lambda}\right]$ and $G_{1}=\left[\begin{array}{cc}e_{\lambda} I_{2} & 0 \\ f_{1} & e_{-\lambda} I_{2}\end{array}\right]$, where $f_{1}=c_{-1}^{(1)} e_{-\nu}+c_{0}^{(1)}+c_{1}^{(1)} e_{\alpha}$,

$$
c_{0}^{(1)}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad c_{ \pm 1}^{(1)}=\left[\begin{array}{cc}
x_{ \pm} & y_{ \pm} \\
0 & z_{ \pm}
\end{array}\right]
$$

From commutativity of c_{1} with c_{-1} it follows that $x_{+} z_{-}=x_{-} z_{+}$; however, later on we will encounter a factorization problem for matrices G_{1} with $c_{ \pm 1}^{(1)}$ not satisfying this requirement. Therefore, we do not impose the condition $x_{+} z_{-}=x_{-} z_{+}$in our consideration.

The case $x_{+}=x_{-}=z_{+}=z_{-}=0$ is excluded because otherwise the triple $\left\{c_{-1}, c_{0}, c_{1}\right\}$ would be reducible. The cases $x_{+} z_{+} \neq 0$ and $x_{-} z_{-} \neq 0$ are covered by Corollary 2.5. In all the remaining cases an $A P_{W}$ factorization of G_{1} also exists; it is constructed explicitly in Appendix B of the supplement. Hence, matrices G of type (v) are also $A P_{W}$ factorable.

As an application of Theorem 3.1, consider a difference equation

$$
\begin{equation*}
c_{-1} y(t-\nu)+c_{0} y(t)+c_{1} y(t+\alpha)=g(t) \text { a.e. on }(0, \lambda), \tag{3.5}
\end{equation*}
$$

where g is a given vector function in $L^{p}(0, \lambda), y$ is an unknown vector function in $L^{p}(\mathbb{R})$ with supp $y \subset[0, \lambda]$.

According to standard terminology, we say that (3.5) is normally solvable (in L^{p}) if the set of vector functions g for which (3.5) has a solution is closed.
Theorem 3.2. In (3.5) let $\alpha+\nu=\lambda$, let $\frac{\alpha}{\nu}(>0)$ be irrational, and let the coefficients $c_{j} \in \mathbb{C}^{m \times m}$ satisfy the conditions of Theorem 3.1. Then the equation (3.5) is normally solvable if and only if, in the notation of Theorem 3.1, condition (3.1) fails for every k.

This result does not depend on $p \in(1, \infty)$.
Proof. As follows from [7, Section 4.1], equation (3.5) is normally solvable if and only if the Wiener-Hopf operator W_{G}, the symbol G of which is given by (1.4), (1.5), has closed range in $L^{p}(0, \infty)$.

If condition (3.1) fails for all k, then the matrix function G is $A P_{W}$ factorable due to Theorem 3.1. Hence, W_{G} has a generalized inverse, and therefore its range is closed.

To prove the converse statement, consider first a particular case when in (1.5) each matrix c_{j} has a singleton spectrum $\left\{\xi_{j}\right\}$, and

$$
\left|\xi_{1}^{\nu} \xi_{-1}^{\alpha}\right|=\left|\xi_{0}\right|^{\lambda} \neq 0 .
$$

According to Theorem 3.1, the matrix function G in this case is not $A P$ factorable.
If $m=1$, the homogeneous equation (3.5) takes the form

$$
y(t)= \begin{cases}-\frac{\xi_{-1}}{\xi_{0}} y(t-\nu) & \text { if } \nu<t<\lambda, \\ -\frac{\xi_{1}}{\xi_{0}} y(t+\alpha) & \text { if } 0<t<\nu,\end{cases}
$$

and has at most one linearly independent solution (see, for example, [4]).
For $m>1$, a similarity can be used to put the c_{j} simultaneously in a triangular form, with ξ_{j} on the diagonal. Therefore, the number of linearly independent solutions of the respective homogeneous equation (3.5) is at most m. Suppose that this equation is normally solvable. Then the corresponding Wiener-Hopf operator W_{G} has a closed range and a finite dimensional kernel; in other words, it is n-normal. This property, as well as the index ind W_{G} of the operator W_{G} (the difference between the dimension of its kernel and the codimension of its range), is preserved under small perturbations. Consider such a small perturbation $W_{G_{f^{\prime}}}$ with $f^{\prime}=$ $c_{-1} e_{-\nu}+\left(c_{0}+\epsilon I\right)+c_{1} e_{\alpha}$, and $0 \neq\left|\xi_{0}+\epsilon\right| \neq\left|\xi_{0}\right|$. Then $G^{\prime}=G_{f^{\prime}}$ admits an $A P_{W}$ factorization with zero partial $A P$ indices (Corollary 1.4), so that $W_{G^{\prime}}$ is invertible. Hence, ind $W_{G}=\operatorname{ind} W_{G^{\prime}}=0$. From here it follows that codim $\operatorname{Im} W_{G}$ is finite together with $\operatorname{dim} \operatorname{Ker} W_{G}$; that is, the operator W_{G} is Fredholm. Since $G \in A P_{W}$, Theorem 2.5 of [7] implies that G is $A P_{W}$ factorable. This contradiction shows that in fact the range $\operatorname{Im} W_{G}$ of the operator W_{G} is not closed.

Finally, consider the general case when (3.1) holds for some k. Then, as was shown in the proof of Theorem 3.1, the corresponding matrix G can be split into a direct sum of summands, a non-zero number of which are of the type just considered. Hence, W_{G} also splits into a direct sum of operators, some of which have a nonclosed range. Therefore, $\operatorname{Im} W_{G}$ is not closed.

Remark. The above reasoning shows that for matrix functions G satisfying the conditions of Theorem 3.1 the operator W_{G} has a closed range if and only if G is $A P$ factorable. This is not true in general; examples of not $A P$ factorable 2×2 triangular matrix functions $G \in A P_{W}$ for which $\operatorname{Im} W_{G}$ is closed can be found in [10].

4. Remarks on 4×4 cases

Theorem 3.1 covers all matrices (1.4), (1.5) with commuting c_{j} of size $m \leq 3$. Hence, the case of reducible 4×4 triples is also covered. For irreducible $\left\{c_{-1}, c_{0}, c_{1}\right\}$, each c_{j} has a singleton spectrum, say $\sigma\left(c_{j}\right)=\left\{\xi_{j}\right\}$. The cases when at least one of the ξ_{j} differs from zero or c_{j} is unicellular also fall into the setting of Theorem 3.1.

This leaves us with the situation of an irreducible triple of 4×4 nilpotent matrices $c_{j}(j=0, \pm 1)$, none of which is unicellular. We may suppose in addition that none of them is diagonalizable (that is, has only 1×1 Jordan cells). Indeed, a diagonalizable nilpotent matrix equals zero, and the corresponding G is then $A P_{W}$ factorable due to Theorem 1.2. There remain three possible Jordan structures: two 2×2 cells, one 2×2 and two 1×1 cells, and one 3×3 and one 1×1 cells.

The following example demonstrates why the case of two 2×2 Jordan cells is hard to handle.

Example. Let $c_{j}=\left[\begin{array}{cc}0 & c_{j}^{(0)} \\ 0 & 0\end{array}\right]$, where the $c_{j}^{(0)}$ are arbitrary (not necessarily commuting) non-singular 2×2 matrices, $j= \pm 1,0$. Then G can be split into a direct sum of $\left[\begin{array}{cc}e_{\lambda} I_{2} & 0 \\ 0 & e_{-\lambda} I_{2}\end{array}\right]$ and $G_{0}=\left[\begin{array}{cc}e_{\lambda} I_{2} & 0 \\ c_{-1}^{(0)} e_{-\nu}+c_{0}^{(0)}+c_{1}^{(0)} e_{\alpha} & e_{-\lambda} I_{2}\end{array}\right]$. According to Lemma 2.1, the matrices G and G_{0} are $A P$ factorable only simultaneously. Hence, the $A P$ factorization problem for G is reduced to the corresponding problem for matrices of the form (1.4) with non-commuting coefficients of f. Since the latter problem is still open, it is not surprising that a complete description of the $A P$ factorability for matrices (1.4), (1.5) with commuting 4×4 coefficients c_{j} is also missing.

We will now discuss the two remaining possibilities for the Jordan structure of c_{0}. First, let c_{0} consist of one 2×2 and two 1×1 Jordan cells. Without loss of generality, c_{0} itself is in a Jordan form:

$$
c_{0}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \tag{4.1}\\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

From the commutativity of $c_{ \pm 1}$ with c_{0} and their nilpotency it follows that

$$
c_{ \pm 1}=\left[\begin{array}{cccc}
0 & a_{ \pm} & b_{ \pm} & d_{ \pm} \\
0 & 0 & 0 & 0 \\
0 & f_{ \pm} & h_{ \pm} & l_{ \pm} \\
0 & g_{ \pm} & j_{ \pm} & k_{ \pm}
\end{array}\right]
$$

where $A_{ \pm}=\left[\begin{array}{cc}h_{ \pm} & l_{ \pm} \\ j_{ \pm} & k_{ \pm}\end{array}\right]$are themselves nilpotent.
We may also use a similarity to reduce A_{+}to its Jordan canonical form without disturbing c_{0} and the structure of A_{-}. Thus, $h_{+}=k_{+}=j_{+}=0$ and $l_{+}=0$ or 1 .

If $l_{+}=1$, then commutativity of c_{1} with c_{-1} implies that $h_{-}=k_{-}=j_{-}=0$. If $l_{+}=0$ (that is, $A_{+}=0$), then we can use a similarity to reduce A_{-}to its Jordan canonical form without changing c_{0} and A_{+}. Hence, in any case it may be supposed that $h_{ \pm}=k_{ \pm}=j_{ \pm}=0$, that is,

$$
c_{ \pm 1}=\left[\begin{array}{cccc}
0 & a_{ \pm} & b_{ \pm} & d_{ \pm} \tag{4.2}\\
0 & 0 & 0 & 0 \\
0 & f_{ \pm} & 0 & l_{ \pm} \\
0 & g_{ \pm} & 0 & 0
\end{array}\right]
$$

Also, from commutativity of c_{1} with c_{-1} (which is preserved under the similarities applied above),

$$
\begin{equation*}
l_{+} g_{-}=l_{-} g_{+}, l_{+} b_{-}=l_{-} b_{+}, b_{+} f_{-}+d_{+} g_{-}=b_{-} f_{+}+d_{-} g_{+} \tag{4.3}
\end{equation*}
$$

Theorem 4.1. Let G be given by (1.4), (1.5) with $c_{0}, c_{ \pm 1}$ as in (4.1) and (4.2), respectively, satisfying (4.3) and forming an irreducible triple $\left\{c_{-1}, c_{0}, c_{1}\right\}$. Then G is not AP factorable if

$$
b_{+}=b_{-}=g_{+}=g_{-}=0, \quad\left|D_{-}^{\alpha} D_{+}^{\nu}\right|=\left|l_{+}^{\nu} l_{-}^{\alpha}\right| \neq 0
$$

where

$$
D_{ \pm}=\operatorname{det}\left[\begin{array}{cc}
a_{ \pm} & d_{ \pm} \\
f_{ \pm} & l_{ \pm}
\end{array}\right]=a_{ \pm} l_{ \pm}-d_{ \pm} f_{ \pm}
$$

and is $A P_{W}$ factorable otherwise.
Proof. We need to show that G is $A P_{W}$ factorable if
i) at least one of the numbers $b_{ \pm}, d_{ \pm}$differs from zero, or
ii) $b_{+}=b_{-}=g_{+}=g_{-}=l_{+} l_{-} D_{+} D_{-}=0$
and that in the case

$$
\text { iii) } b_{+}=b_{-}=g_{+}=g_{-}=0, l_{ \pm} D_{ \pm} \neq 0
$$

it is $A P\left(A P_{W}\right)$ factorable if and only if

$$
\begin{equation*}
\left|D_{-}^{\alpha} D_{+}^{\nu}\right| \neq\left|l_{+}^{\nu} l_{-}^{\alpha}\right| . \tag{4.4}
\end{equation*}
$$

In case i), rewrite G as a direct sum of $\operatorname{diag}\left[e_{\lambda}, e_{-\lambda}\right]$ and another matrix of the form (1.4), with $m=3$ and

$$
c_{ \pm 1}=\left[\begin{array}{ccc}
a_{ \pm} & b_{ \pm} & d_{ \pm} \\
f_{ \pm} & 0 & l_{ \pm} \\
g_{ \pm} & 0 & 0
\end{array}\right], \quad c_{0}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

If c_{-1} is invertible, that is, $b_{-} g_{-} l_{-} \neq 0$, then Lemma 2.2 can be used. A direct computation shows that

$$
c_{-1}^{-1} c_{0}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
\frac{1}{b_{-}} & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

and therefore $\left(c_{-1}^{-1} c_{0}\right)^{2}=0$. Hence, f_{1} in (2.4) is at most a binomial, and the matrix G_{1} is $A P_{W}$ factorable due to Theorem 1.2. The original matrix G is then also $A P_{W}$ factorable.

Using (2.8) and appropriate transpositions of rows and columns, we can cover the case of invertible c_{1}, that is, $b_{+} g_{+} l_{+} \neq 0$. It remains to construct an $A P_{W}$ factorization in the cases when, in addition to (4.3),

$$
\begin{equation*}
b_{+} g_{+} l_{+}=b_{-} g_{-} l_{-}=0 \tag{4.5}
\end{equation*}
$$

This is done in Appendix C.
In cases ii) and iii), we represent G as a direct sum of $\left[\begin{array}{cc}e_{\lambda} I_{2} & 0 \\ 0 & e_{-\lambda} I_{2}\end{array}\right]$ and another matrix G_{1} of the form (1.4), (1.5) with $m=2$ and

$$
c_{ \pm 1}^{(1)}=\left[\begin{array}{ll}
a_{ \pm} & d_{ \pm} \\
f_{ \pm} & l_{ \pm}
\end{array}\right], \quad c_{0}^{(1)}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

If $l_{+}=0$ and $d_{+} f_{+} \neq 0$, then the matrix G_{1} is $A P_{W}$ factorable due to Corollary 2.5 . The same reasoning applies if $l_{-}=0, d_{-} f_{-} \neq 0$. The cases $l_{+}=l_{-}=$ $d_{+} f_{+}=d_{-} f_{-}=0$ when not all of the four entries $d_{ \pm}, f_{ \pm}$equal zero are covered by Appendix B in the supplement. Observe that the case $d_{ \pm}=f_{ \pm}=0$ is excluded due to the irreducibility of the original triple $\left\{c_{-1}, c_{0}, c_{1}\right\}$ given by (4.1), (4.2). Hence, the situation when $l_{+}=l_{-}=0$ is covered completely.

In all other cases (when at least one of l_{+}, l_{-}differs from zero) we may use the symmetry (2.8) to suppose without loss of generality that, say, $l_{-} \neq 0$. An obvious
similarity performed on the original 4×4 matrices $c_{ \pm 1}$ (and not changing c_{0}) allows us to suppose in addition that $d_{-}=f_{-}=0$. This similarity may, of course, change the values of $a_{ \pm}$and d_{+}, f_{+}; however, $\operatorname{det} c_{ \pm 1}^{(1)}$ remain the same, so that the new value of a_{-}is D_{-} / l_{-}. To simplify the notation, we redenote D_{+}by D.

If $l_{+}=0$, then d_{+}, f_{+}do not change under the above mentioned similarity. The only situation left uncovered by previous considerations is the case in which exactly one of d_{+}, f_{+}differs from zero.

In case ii), we are left with only two possibilities: 1) $l_{-} \neq 0, l_{+}=d_{-}=f_{-}=0$, exactly one of the entries d_{+}, f_{+}differs from zero, and 2) $l_{+} l_{-} \neq 0, d_{-}=f_{-}=0$, $a_{-} D=0$. Appendix D in the supplement shows that the corresponding matrix G_{1} (and therefore G) is $A P_{W}$ factorable.

In case iii), the additional condition $d_{-}=f_{-}=0$ means that $a_{-}\left(=D_{-} / l_{-}\right) \neq 0$, and (4.4) can be rewritten as

$$
\begin{equation*}
\left|a_{-}^{\alpha} D^{\nu}\right| \neq\left|l_{+}^{\nu}\right| . \tag{4.6}
\end{equation*}
$$

A straightforward calculation shows that $G_{1}=X_{+} G^{\prime} X_{-}$, where

$$
X_{+}=\left[\begin{array}{cccc}
1 & d_{+} l_{-} e_{\lambda} & 0 & 0 \\
-\frac{f_{+}}{l_{+}} & a_{-} l_{+} e_{\lambda}-l_{-}\left(e_{\nu}+a_{-}\right) & -e_{\nu} & \frac{f_{+} e_{\nu}}{l_{+}} \\
0 & d_{+}\left(a_{-} l_{+}+a_{+} l_{-}\right) e_{\alpha} & -d_{+} & a_{+} \\
0 & \left(a_{-} l_{+}^{2}+d_{+} f_{+} l_{-}\right) e_{\alpha}-l_{-} l_{+} & -l_{+} & f_{+}
\end{array}\right]
$$

is invertible in $A P_{W}^{+}$,

$$
X_{-}=\left[\begin{array}{cccc}
1 & -\frac{d_{+} l_{-}}{a_{-} l_{+}} & 0 & -\frac{d_{+} e_{-\alpha}}{a_{-} l_{+}} \\
0 & \frac{1}{a-l_{+}} & 0 & \frac{e_{-\alpha}}{a-l_{+} l_{-}} \\
\frac{f_{+}\left(1+a_{-} e_{-\nu}\right)}{D} & -\frac{a_{+} l_{-}\left(1+e_{-}-e_{-\nu}\right)}{a_{-} D} & \frac{f_{+} e_{-\lambda}}{D_{-}} & \frac{1}{l_{-}}-\frac{a_{+}\left(a_{-} e_{-\lambda} e_{-\alpha}\right.}{a_{-} D} \\
0 & 0 & \frac{l_{+}}{D} & 0
\end{array}\right]
$$

is invertible in $A P_{W}^{-}$, and

$$
G^{\prime}=\left[\begin{array}{cccc}
e_{\lambda} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
a_{-} l_{+} e_{-\nu}+l_{+}+D e_{\alpha} & 0 & 0 & e_{-\lambda}
\end{array}\right]
$$

can be split into a direct sum of I_{2} with

$$
G_{2}=\left[\begin{array}{cc}
e_{\lambda} & 0 \\
a_{-} l_{+} e_{-\nu}+l_{+}+D e_{\alpha} & e_{-\lambda}
\end{array}\right]
$$

Of course, G_{1} is $A P\left(A P_{W}\right)$ factorable only simultaneously with G^{\prime}, and in turn, G^{\prime} has the same factorability properties as G_{2}. The latter matrix satisfies the conditions of Corollary 1.4 with $m=1$. In the notation of this statement, $\xi_{1, k}=D$, $\xi_{0 k}=l_{+}$and $\xi_{-1, k}=a_{-} l_{+}$with the only value of $k(=1)$, so that condition (1.7), necessary and sufficient for an $A P\left(A P_{W}\right)$ factorization to exist, is equivalent to (4.6).

Finally, let c_{0} consist of one 3×3 and one 1×1 Jordan cells

$$
c_{0}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Then the only possible form of $c_{ \pm 1}$ is

$$
c_{ \pm 1}=\left[\begin{array}{cccc}
0 & d_{ \pm} & f_{ \pm} & b_{ \pm} \\
0 & 0 & d_{ \pm} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & a_{ \pm} & 0
\end{array}\right]
$$

where

$$
\begin{equation*}
a_{+} b_{-}=a_{-} b_{+} . \tag{4.7}
\end{equation*}
$$

The case $a_{+}=a_{-}=b_{+}=b_{-}=0$ is excluded if the triple $\left\{c_{-1}, c_{0}, c_{1}\right\}$ is irreducible. Splitting G into a direct sum of $\operatorname{diag}\left[e_{\lambda}, e_{-\lambda}\right]$ and another matrix of the form (1.4), we may suppose that $m=3$ and

$$
c_{ \pm 1}=\left[\begin{array}{ccc}
d_{ \pm} & f_{ \pm} & b_{ \pm} \\
0 & d_{ \pm} & 0 \\
0 & a_{ \pm} & 0
\end{array}\right], \quad c_{0}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

In the case when all four of the coefficients $a_{ \pm}, b_{ \pm}$are different from zero, an $A P_{W}$ factorization exists and can be explicitly constructed (see Appendix E in the supplement). Due to the commutativity condition (4.7), the number of non-zero entries among $a_{ \pm}, b_{ \pm}$cannot equal one. However, there remain cases of exactly two or three non-zero numbers $a_{ \pm}, b_{ \pm}$, and in these cases the $A P$ factorability of the corresponding matrices G is still unknown.

References

[1] M. Bakonyi, L. Rodman, I. Spitkovsky, and H. Woerdeman, Positive extensions of matrix functions of two variables with support in an infinite band, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), no. 8, 859-863. MR 97i:47023
[2] M. A. Bastos, Yu. I. Karlovich, I. M. Spitkovsky, and. P. M. Tishin, On a new algorithm for almost periodic factorization, Operator Theory: Advances and Applications 103 (1998), 53-74. CMP 98:16
[3] C. Corduneanu, Almost periodic functions, J. Wiley \& Sons, 1968. MR 58:2006
[4] N. K. Karapetjanc and S. G. Samko, The functional equation $\psi(x+\alpha)-b(x) \psi(x)=g(x)$, Izv. Akad. Nauk Armjan. SSR. Ser. Mat. 5 (1970), no. 5, 441-448. MR 44:2101
[5] Yu. I. Karlovich, On the Haseman problem, Demonstratio Math. 26 (1993), 581-595. MR 95a:47048
[6] Yu. I. Karlovich and I. M. Spitkovsky, Factorization of almost periodic matrix-valued functions and the Noether theory for certain classes of equations of convolution type, Mathematics of the USSR, Izvestiya 34 (1990), 281-316. MR 90f: 47034
[7] , (Semi)-Fredholmness of convolution operators on the spaces of Bessel potentials, Operator Theory: Advances and Applications 71 (1994), 122-152. MR 95h:47034
[8] _ Almost periodic factorization: An analogue of Chebotarev's algorithm, Contemporary Math. 189 (1995), 327-352. MR 96h:47024
[9] , Factorization of almost periodic matrix functions, J. Math. Anal. Appl. 193 (1995), 209-232. MR 96m:47047
[10] , Semi-Fredholm properties of certain singular integral operators, Operator Theory: Advances and Applications 90 (1996), 264-287. MR 97k:47046
[11] B. M. Levitan, Almost periodic functions, GITTL, Moscow, 1953 (in Russian). MR 15:700a
[12] B. M. Levitan and V. V. Zhikov, Almost periodic functions and differential equations, Cambridge University Press, 1982. MR 84g:34004
[13] G. S. Litvinchuk and I. M. Spitkovsky, Factorization of measurable matrix functions, Birkhäuser Verlag, Basel and Boston, 1987. MR 90g:47030
[14] Yu. Lyubarskii and I. Spitkovsky, Sampling and interpolating for a lacunary spectrum, Royal Society of Edinburgh, Proceedings 126A (1996), 77-87. MR 97b:41004
[15] L. Rodman, I. M. Spitkovsky, and H. J. Woerdeman, Carathéodory-Toeplitz and Nehari problems for matrix valued almost periodic functions, Trans. Amer. Math. Soc. 350 (1998), 2185-2227. MR 98h:47023
[16] I. M. Spitkovsky, On the factorization of almost periodic matrix functions, Math. Notes 45 (1989), no. 5-6, 482-488. MR 90k:47033
[17] I. M. Spitkovsky and H. J. Woerdeman, The Carathèodory-Toeplitz problem for almost periodic functions, J. Functional Analysis 115 (1993), no. 2, 281-293. MR 94f:47020

Department of Mathematics, The College of William and Mary, Williamsburg, VA 23187-8795

E-mail address: ilya@math.wm.edu
Department of Applied Mathematics, University of Washington, Seattle, WA 98195
E-mail address: dyong@u.washington.edu

